29,245 research outputs found

    Field-tuned quantum critical point of antiferromagnetic metals

    Full text link
    A magnetic field applied to a three-dimensional antiferromagnetic metal can destroy the long-range order and thereby induce a quantum critical point. Such field-induced quantum critical behavior is the focus of many recent experiments. We investigate theoretically the quantum critical behavior of clean antiferromagnetic metals subject to a static, spatially uniform external magnetic field. The external field does not only suppress (or induce in some systems) antiferromagnetism but also influences the dynamics of the order parameter by inducing spin precession. This leads to an exactly marginal correction to spin-fluctuation theory. We investigate how the interplay of precession and damping determines the specific heat, magnetization, magnetocaloric effect, susceptibility and scattering rates. We point out that the precession can change the sign of the leading \sqrt{T} correction to the specific heat coefficient c(T)/T and can induce a characteristic maximum in c(T)/T for certain parameters. We argue that the susceptibility \chi =\partial M/\partial B is the thermodynamic quantity which shows the most significant change upon approaching the quantum critical point and which gives experimental access to the (dangerously irrelevant) spin-spin interactions.Comment: 12 pages, 8 figure

    Strange matter in core-collapse supernovae

    Full text link
    We discuss the possible impact of strange quark matter on the evolution of core-collapse supernovae with emphasis on low critical densities for the quark-hadron phase transition. For such cases the hot proto-neutron star can collapse to a more compact hybrid star configuration hundreds of milliseconds after core-bounce. The collapse triggers the formation of a second shock wave. The latter leads to a successful supernova explosion and leaves an imprint on the neutrino signal. These dynamical features are discussed with respect to their compatibility with recent neutron star mass measurements which indicate a stiff high density nuclear matter equation of state.Comment: 8 pages, 3 figures, Invited talk at the "Strangeness in Quark Matter" conference, 18-24 September 2011, Polish Academy of Arts and Sciences, Cracow, Polan

    Analytic structure in the coupling constant plane in perturbative QCD

    Full text link
    We investigate the analytic structure of the Borel-summed perturbative QCD amplitudes in the complex plane of the coupling constant. Using the method of inverse Mellin transform, we show that the prescription dependent Borel-Laplace integral can be cast, under some conditions, into the form of a dispersion relation in the a-plane. We also discuss some recent works relating resummation prescriptions, renormalons and nonperturbative effects, and show that a method proposed recently for obtaining QCD nonperturbative condensates from perturbation theory is based on special assumptions about the analytic structure in the coupling plane that are not valid in QCD.Comment: 14 pages, revtex4, 1 eps-figur

    Microscopic model for Bose-Einstein condensation and quasiparticle decay

    Full text link
    Sufficiently dimerized quantum antiferromagnets display elementary S=1 excitations, triplon quasiparticles, protected by a gap at low energies. At higher energies, the triplons may decay into two or more triplons. A strong enough magnetic field induces Bose-Einstein condensation of triplons. For both phenomena the compound IPA-CuCl3 is an excellent model system. Nevertheless no quantitative model was determined so far despite numerous studies. Recent theoretical progress allows us to analyse data of inelastic neutron scattering (INS) and of magnetic susceptibility to determine the four magnetic couplings J1=-2.3meV, J2=1.2meV, J3=2.9meV and J4=-0.3meV. These couplings determine IPA-CuCl3 as system of coupled asymmetric S=1/2 Heisenberg ladders quantitatively. The magnetic field dependence of the lowest modes in the condensed phase as well as the temperature dependence of the gap without magnetic field corroborate this microscopic model.Comment: 6 pages, 5 figure

    Femtosecond energy transfer between chromophores in allophycocyanin trimers

    Get PDF
    Ultrafast energy-transfer processes in allophycocyanin (APC) trimers from Mastigocladus laminosus have been examined by a femtosecond absorption technique. Isotropic absorption recovery kinetics with τ=440±30 fs were observed in APC trimers at 615 nm. In APC monomers such a fast process was not observed. The anisotropy in both samples was constant and close to 0.4 during the first few picoseconds. The results are consistent with a model of the APC trimer in which the two APC chromophores have different absorption spectra with maxima about 600 and 650 nm. The transfer of energy from the 600 nm chromophore to the 650 nm chromophore occurs in 440 fs and is dominated by the Förster dipole—dipole energy-transfer mechanism

    Calculation of low-frequency vibrational models of biologically important isomers

    Get PDF
    Copyright © 2006 SPIE--The International Society for Optical Engineering Copyright 2006 Society of Photo-Optical Instrumentation Engineers. This paper was published in Biomedical Applications of Micro- and Nanoengineering III, edited by Dan V. Nicolau, Proc. of SPIE Vol. 6416, 641607 and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.In this paper we compare the value of different molecular modeling techniques for the prediction of vibrational modes, especially in the mid- and far-infrared region. There is a wide range of different levels of theory available for molecular modelling - the choice depending on the kind of system to be investigated. For our calculations we use different theoretical approaches such as Hartree-Fock and Density functional theory. We also compare the performances of two available electronic structure programs-Gamess-US and Gaussian03. As examples, we use two different retinoids - all-trans retinal and all-trans retinoic acid - derivatives of Vitamin A.Inke Jones, Tamath J. Rainsford, Bernd M. Fischer, and Derek Abbot

    Momentum diffusion for coupled atom-cavity oscillators

    Full text link
    It is shown that the momentum diffusion of free-space laser cooling has a natural correspondence in optical cavities when the internal state of the atom is treated as a harmonic oscillator. We derive a general expression for the momentum diffusion which is valid for most configurations of interest: The atom or the cavity or both can be probed by lasers, with or without the presence of traps inducing local atomic frequency shifts. It is shown that, albeit the (possibly strong) coupling between atom and cavity, it is sufficient for deriving the momentum diffusion to consider that the atom couples to a mean cavity field, which gives a first contribution, and that the cavity mode couples to a mean atomic dipole, giving a second contribution. Both contributions have an intuitive form and present a clear symmetry. The total diffusion is the sum of these two contributions plus the diffusion originating from the fluctuations of the forces due to the coupling to the vacuum modes other than the cavity mode (the so called spontaneous emission term). Examples are given that help to evaluate the heating rates induced by an optical cavity for experiments operating at low atomic saturation. We also point out intriguing situations where the atom is heated although it cannot scatter light.Comment: More information adde

    Word order and discontinuities in dependency grammar

    Get PDF
    Natural languages are always difficult to parse. Two phenomena that constantly pose problems for different formalisms are word order - what part of a sentence has to be placed where - and discontinuities - words that belong together but are not placed into the same phrase. Dependency grammar, a linguistic formalism based on binary relations between words, is very adequate for handling both problems. A parser for dependency grammar together with its grammar writing formalism is described in this paper. Word order and discontinuities in Hungarian are handled based on this formalism
    • …
    corecore