45,813 research outputs found

    Development flight tests of JetStar LFC leading-edge flight test experiment

    Get PDF
    The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized

    Dynamical Mass Generation in Landau gauge QCD

    Get PDF
    We summarise results on the infrared behaviour of Landau gauge QCD from the Green's functions approach and lattice calculations. Approximate, nonperturbative solutions for the ghost, gluon and quark propagators as well as first results for the quark-gluon vertex from a coupled set of Dyson-Schwinger equations are compared to quenched and unquenched lattice results. Almost quantitative agreement is found for all three propagators. Similar effects of unquenching are found in both approaches. The dynamically generated quark masses are close to `phenomenological' values. First results for the quark-gluon vertex indicate a complex tensor structure of the non-perturbative quark-gluon interaction.Comment: 6 pages, 6 figures, Summary of a talk given at the international conference QCD DOWN UNDER, March 10 - 19, Adelaide, Australi

    Rayleigh-Benard Convection with a Radial Ramp in Plate Separation

    Get PDF
    Pattern formation in Rayleigh-Benard convection in a large-aspect-ratio cylinder with a radial ramp in the plate separation is studied analytically and numerically by performing numerical simulations of the Boussinesq equations. A horizontal mean flow and a vertical large scale counterflow are quantified and used to understand the pattern wavenumber. Our results suggest that the mean flow, generated by amplitude gradients, plays an important role in the roll compression observed as the control parameter is increased. Near threshold the mean flow has a quadrupole dependence with a single vortex in each quadrant while away from threshold the mean flow exhibits an octupole dependence with a counter-rotating pair of vortices in each quadrant. This is confirmed analytically using the amplitude equation and Cross-Newell mean flow equation. By performing numerical experiments the large scale counterflow is also found to aid in the roll compression away from threshold but to a much lesser degree. Our results yield an understanding of the pattern wavenumbers observed in experiment away from threshold and suggest that near threshold the mean flow and large scale counterflow are not responsible for the observed shift to smaller than critical wavenumbers.Comment: 10 pages, 13 figure

    Enhanced tracer transport by the spiral defect chaos state of a convecting fluid

    Get PDF
    To understand how spatiotemporal chaos may modify material transport, we use direct numerical simulations of the three-dimensional Boussinesq equations and of an advection-diffusion equation to study the transport of a passive tracer by the spiral defect chaos state of a convecting fluid. The simulations show that the transport is diffusive and is enhanced by the spatiotemporal chaos. The enhancement in tracer diffusivity follows two regimes. For large Peclet numbers (that is, small molecular diffusivities of the tracer), we find that the enhancement is proportional to the Peclet number. For small Peclet numbers, the enhancement is proportional to the square root of the Peclet number. We explain the presence of these two regimes in terms of how the local transport depends on the local wave numbers of the convection rolls. For large Peclet numbers, we further find that defects cause the tracer diffusivity to be enhanced locally in the direction orthogonal to the local wave vector but suppressed in the direction of the local wave vector.Comment: 11 pages, 12 figure

    What the Infrared Behaviour of QCD Vertex Functions in Landau gauge can tell us about Confinement

    Get PDF
    The infrared behaviour of Landau gauge QCD vertex functions is investigated employing a skeleton expansion of the Dyson-Schwinger and Renormalization Group equations. Results for the ghost-gluon, three-gluon, four-gluon and quark-gluon vertex functions are presented. Positivity violation of the gluon propagator, and thus gluon confinement, is demonstrated. Results of the Dyson-Schwinger equations for a finite volume are compared to corresponding lattice data. It is analytically demonstrated that a linear rising potential between heavy quarks can be generated by infrared singularities in the dressed quark-gluon vertex. The selfconsistent mechanism that generates these singularities necessarily entails the scalar Dirac amplitudes of the full vertex and the quark propagator. These can only be present when chiral symmetry is broken, either explicitly or dynamically.Comment: 13 pages, 13 figures; to appear in the Proceedings of ``X Hadron Physics 2007'', Florianopolis, Brazil, March 26 - 31, 200

    Traveling waves in rotating Rayleigh-Bénard convection: Analysis of modes and mean flow

    Get PDF
    Numerical simulations of the Boussinesq equations with rotation for realistic no-slip boundary conditions and a finite annular domain are presented. These simulations reproduce traveling waves observed experimentally. Traveling waves are studied near threshhold by using the complex Ginzburg-Landau equation (CGLE): a mode analysis enables the CGLE coefficients to be determined. The CGLE coefficients are compared with previous experimental and theoretical results. Mean flows are also computed and found to be more significant as the Prandtl number decreases (from sigma=6.4 to sigma=1). In addition, the mean flow around the outer radius of the annulus appears to be correlated with the mean flow around the inner radius

    Extensive chaos in Rayleigh-Bénard convection

    Get PDF
    Using large-scale numerical calculations we explore spatiotemporal chaos in Rayleigh-Bénard convection for experimentally relevant conditions. We calculate the spectrum of Lyapunov exponents and the Lyapunov dimension describing the chaotic dynamics of the convective fluid layer at constant thermal driving over a range of finite system sizes. Our results reveal that the dynamics of fluid convection is truly chaotic for experimental conditions as illustrated by a positive leading-order Lyapunov exponent. We also find the chaos to be extensive over the range of finite-sized systems investigated as indicated by a linear scaling between the Lyapunov dimension of the chaotic attractor and the system size

    The swiss army knife of job submission tools: grid-control

    Get PDF
    Grid-control is a lightweight and highly portable open source submission tool that supports virtually all workflows in high energy physics (HEP). Since 2007 it has been used by a sizeable number of HEP analyses to process tasks that sometimes consist of up 100k jobs. grid-control is built around a powerful plugin and configuration system, that allows users to easily specify all aspects of the desired workflow. Job submission to a wide range of local or remote batch systems or grid middleware is supported. Tasks can be conveniently specified through the parameter space that will be processed, which can consist of any number of variables and data sources with complex dependencies on each other. Dataset information is processed through a configurable pipeline of dataset filters, partition plugins and partition filters. The partition plugins can take the number of files, size of the work units, metadata or combinations thereof into account. All changes to the input datasets or variables are propagated through the processing pipeline and can transparently trigger adjustments to the parameter space and the job submission. While the core functionality is completely experiment independent, integration with the CMS computing environment is provided by a small set of plugins.Comment: 8 pages, 7 figures, Proceedings for the 22nd International Conference on Computing in High Energy and Nuclear Physic

    Large-scale Multiconfiguration Hartree-fock Calculations of Hyperfine-interaction Constants For Low-lying States In Beryllium, Boron, and Carbon

    Get PDF
    Multiconfiguration Hartree-Fock (MCHF) calculations of hyperfine constants for the 2s2p 3P states of beryllium and the ground states of boron and carbon are reported. The capacity of a recently developed configuration-interaction program [Froese Fischer and Tong (unpublished); Stathopoulos and Froese Fischer (unpublished)], allowing for large configuration expansions, is explored. Using a systematic active-space MCHF approach, combined with large multireference configuration-interaction calculations, it is shown that hyperfine constants can be calculated very accurately. To reliably account for spin-polarization of the Is and 2s shells in boron and carbon, three-particle effects had to be included in a systematic way. The relativistic, finite-nuclear-size- and finite-nuclear-mass-corrected values of the hyperfine constants are compared with experimental values and with the most accurate theoretical values obtained with other methods

    PEN as self-vetoing structural Material

    Full text link
    Polyethylene Naphtalate (PEN) is a mechanically very favorable polymer. Earlier it was found that thin foils made from PEN can have very high radio-purity compared to other commercially available foils. In fact, PEN is already in use for low background signal transmission applications (cables). Recently it has been realized that PEN also has favorable scintillating properties. In combination, this makes PEN a very promising candidate as a self-vetoing structural material in low background experiments. Components instrumented with light detectors could be built from PEN. This includes detector holders, detector containments, signal transmission links, etc. The current R\&D towards qualification of PEN as a self-vetoing low background structural material is be presented.Comment: 4 pages, 7 figures, contribution to Proceedings of the sixth workshop on Low Radioactivity Techniques 2017, 23-27 May 2017 Seoul, to be published at AIP, editor: D. Leonar
    corecore