3,878 research outputs found

    The adaptor protein PID1 regulates receptor-dependent endocytosis of postprandial triglyceride-rich lipoproteins.

    Get PDF
    ObjectiveInsulin resistance is associated with impaired receptor dependent hepatic uptake of triglyceride-rich lipoproteins (TRL), promoting hypertriglyceridemia and atherosclerosis. Next to low-density lipoprotein (LDL) receptor (LDLR) and syndecan-1, the LDLR-related protein 1 (LRP1) stimulated by insulin action contributes to the rapid clearance of TRL in the postprandial state. Here, we investigated the hypothesis that the adaptor protein phosphotyrosine interacting domain-containing protein 1 (PID1) regulates LRP1 function, thereby controlling hepatic endocytosis of postprandial lipoproteins.MethodsLocalization and interaction of PID1 and LRP1 in cultured hepatocytes was studied by confocal microscopy of fluorescent tagged proteins, by indirect immunohistochemistry of endogenous proteins, by GST-based pull down and by immunoprecipitation experiments. The in vivo relevance of PID1 was assessed using whole body as well as liver-specific Pid1-deficient mice on a wild type or Ldlr-deficient (Ldlr-/-) background. Intravital microscopy was used to study LRP1 translocation in the liver. Lipoprotein metabolism was investigated by lipoprotein profiling, gene and protein expression as well as organ-specific uptake of radiolabelled TRL.ResultsPID1 co-localized in perinuclear endosomes and was found associated with LRP1 under fasting conditions. We identified the distal NPxY motif of the intracellular C-terminal domain (ICD) of LRP1 as the site critical for the interaction with PID1. Insulin-mediated NPxY-phosphorylation caused the dissociation of PID1 from the ICD, causing LRP1 translocation to the plasma membrane. PID1 deletion resulted in higher LRP1 abundance at the cell surface, higher LDLR protein levels and, paradoxically, reduced total LRP1. The latter can be explained by higher receptor shedding, which we observed in cultured Pid1-deficient hepatocytes. Consistently, PID1 deficiency alone led to increased LDLR-dependent endocytosis of postprandial lipoproteins and lower plasma triglycerides. In contrast, hepatic PID1 deletion on an Ldlr-/- background reduced lipoprotein uptake into liver and caused plasma TRL accumulation.ConclusionsBy acting as an insulin-dependent retention adaptor, PID1 serves as a regulator of LRP1 function controlling the disposal of postprandial lipoproteins. PID1 inhibition provides a novel approach to lower plasma levels of pro-atherogenic TRL remnants by stimulating endocytic function of both LRP1 and LDLR in the liver

    Campylobacter jejuni infection of conventionally colonized mice lacking nucleotide-oligomerization-domain-2

    Get PDF
    Background The nucleotide-binding oligomerisaton protein 2 (NOD2) constitutes a pivotal sensor of bacterial muramyl dipeptide and assures expression of distinct antimicrobial peptides and mediators produced by enterocytes and immune cells directed against pathogens including Campylobacter jejuni. We here elucidated the role of NOD2 during murine C. jejuni infection in more detail. Results Conventionally colonized NOD2 deficient (NOD2−/−) mice and corresponding wildtype (WT) counterparts were perorally infected with C. jejuni strain 81–176 on three consecutive days. The pathogen colonized both WT and NOD2−/− mice only sporadically until day 14 post infection (p.i.). However, the slightly higher prevalence of C. jejuni in NOD2−/− mice was accompanied by higher intestinal Escherichia coli loads known to facilitate C. jejuni colonization. Neither overt macroscopic (clinical) nor microscopic sequelae (such as colonic epithelial apoptosis) could be observed upon murine C. jejuni infection of either genotype. Innate immune responses were less distinctly induced in C. jejuni infected NOD2−/− versus WT mice as indicated by lower colonic numbers of neutrophils in the former. Conversely, adaptive immune cell counts including T lymphocytes were higher in large intestines of NOD2−/− as compared to WT mice that were paralleled by increased colonic IL-6 secretion and higher TNF and IL-18 mRNA expression levels in large intestines of the former. Only in NOD2−/− mice, however, colonic IL-22 mRNA expression was down-regulated at day 14 p.i. Whereas viable commensal intestinal bacteria could exclusively be detected in mesenteric lymph nodes and livers of NOD2−/− mice, bacterial translocation rates to kidneys and spleen were NOD2 independent. Notably, large intestinal mRNA expression levels of mucin-2, constituting a pivotal factor involved in epithelial barrier integrity, were comparable in naive and C. jejuni infected mice of either genotype. Conclusion NOD2 is involved in the well-balanced regulation of innate and adaptive pro- inflammatory immune responses of conventional mice upon C. jejuni infection

    Absence of Nucleotide-Oligomerization-Domain-2 Is Associated with Less Distinct Disease in Campylobacter jejuni Infected Secondary Abiotic IL-10 Deficient Mice

    Get PDF
    Human Campylobacter jejuni-infections are progressively increasing worldwide. Despite their high prevalence and socioeconomic impact the underlying mechanisms of pathogen-host-interactions are only incompletely understood. Given that the innate immune receptor nucleotide-oligomerization-domain-2 (Nod2) is involved in clearance of enteropathogens, we here evaluated its role in murine campylobacteriosis. To address this, we applied Nod2-deficient IL-10−/− (Nod2−/− IL-10−/−) mice and IL-10−/− counterparts both with a depleted intestinal microbiota to warrant pathogen-induced enterocolitis. At day 7 following peroral C. jejuni strain 81–176 infection, Nod2 mRNA was down- regulated in the colon of secondary abiotic IL-10−/− and wildtype mice. Nod2-deficiency did neither affect gastrointestinal colonization nor extra- intestinal and systemic translocation properties of C. jejuni. Colonic mucin-2 mRNA was, however, down-regulated upon C. jejuni-infection of both Nod2−/− IL-10−/− and IL-10−/− mice, whereas expression levels were lower in infected, but also naive Nod2−/− IL-10−/− mice as compared to respective IL-10−/− controls. Remarkably, C. jejuni-infected Nod2−/− IL-10−/− mice were less compromised than IL-10−/− counterparts and displayed less distinct apoptotic, but higher regenerative cell responses in colonic epithelia. Conversely, innate as well as adaptive immune cells such as macrophages and monocytes as well as T lymphocytes and regulatory T-cells, respectively, were even more abundant in large intestines of Nod2−/− IL-10−/− as compared to IL-10−/− mice at day 7 post-infection. Furthermore, IFN-γ concentrations were higher in ex vivo biopsies derived from intestinal compartments including colon and mesenteric lymph nodes as well as in systemic tissue sites such as the spleen of C. jejuni infected Nod2−/− IL-10−/− as compared to IL10−/− counterparts. Whereas, at day 7 postinfection anti-inflammatory IL-22 mRNA levels were up- regulated, IL-18 mRNA was down-regulated in large intestines of Nod2−/− IL-10−/− vs. IL-10−/− mice. In summary, C. jejuni-infection induced less clinical signs and apoptosis, but more distinct colonic pro- and (of note) anti-inflammatory immune as well as regenerative cell responses in Nod2 deficient IL-10−/− as compared to IL-10−/− control mice. We conclude that, even though colonic Nod2 mRNA was down-regulated upon pathogenic challenge, Nod2-signaling is essentially involved in the well-balanced innate and adaptive immune responses upon C. jejuni-infection of secondary abiotic IL-10−/− mice, but does neither impact pathogenic colonization nor translocation

    Nature and People in the Andes, East African Mountains, European Alps, and Hindu Kush Himalaya: Current Research and Future Directions

    Get PDF
    Mountains are facing growing environmental, social, and economic challenges. Accordingly, effective policies and management approaches are needed to safeguard their inhabitants, their ecosystems, their biodiversity, and the livelihoods they support. The formulation and implementation of such policies and approaches requires a thorough understanding of, and extensive knowledge about, the interactions between nature and people particular to mountain social–ecological systems. Here, we applied the conceptual framework of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services to assess and compare the contents of 631 abstracts on the interactions among biodiversity, ecosystem services, human wellbeing, and drivers of change, and formulate a set of research recommendations. Our comparative assessment of literature pertained to the Andes, the East African mountains, the European Alps, and the Hindu Kush Himalaya. It revealed interesting differences between mountain systems, in particular in the relative importance given in the literature to individual drivers of change and to the ecosystem services delivered along elevational gradients. Based on our analysis and with reference to alternative conceptual frameworks of mountain social–ecological systems, we propose future research directions and options. In particular, we recommend improving biodiversity information, generating spatially explicit knowledge on ecosystem services, integrating knowledge and action along elevational gradients, generating knowledge on interacting effects of global change drivers, delivering knowledge that is relevant for transformative action toward sustainable mountain development, and using comprehensive concepts and codesigned approaches to effectively address knowledge gaps

    To whom do the results of the multicenter, randomized, controlled INSECT trial (ISRCTN 24023541) apply? - assessment of external validity

    Get PDF
    A response to Seiler et al: Interrupted or continuous slowly absorbable sutures for closure of primary elective midline abdominal incisions: a multicenter randomized trial (INSECT: ISRCTN24023541). Ann Surg 2009, 249(4):576-582

    Interleukin-18 Mediates Immune Responses to Campylobacter jejuni Infection in Gnotobiotic Mice

    Get PDF
    Background Human Campylobacter jejuni infections are progressively rising worldwide. Information about the molecular mechanisms underlying campylobacteriosis, however, are limited. In the present study we investigated whether cytokines such as IL-23, IL-22 and IL-18, which share pivotal functions in host immunity, were involved in mediating intestinal and systemic immunopathological responses upon C. jejuni infection. Methodology/Principal Findings To assure stable infection, gnotobiotic (i.e. secondary abiotic) IL- 23p19-/-, IL-22-/- and IL-18-/- mice were generated by broad-spectrum antibiotic treatment. Following peroral C. jejuni strain 81–176 infection, mice of all genotypes harbored comparably high pathogenic loads in their intestines. As compared to wildtype controls, however, IL-18-/- mice displayed less distinct C. jejuni induced sequelae as indicated by less pronounced large intestinal shrinkage and lower numbers of apoptotic cells in the colonic epithelial layer at day 8 postinfection (p.i.). Furthermore, lower colonic numbers of adaptive immune cells including regulatory T cells and B lymphocytes were accompanied by less distinct secretion of pro-inflammatory cytokines such as TNF and IFN-γ and lower IL-17A mRNA expression levels in colonic ex vivo biopsies of infected IL-18-/- as compared to wildtype mice. Upon C. jejuni infection, colonic IL-23p19 expression was up-regulated in IL-18-/- mice only, whereas IL-22 mRNA levels were lower in uninfected and infected IL-23p19-/- as well as infected IL-18-/- as compared to respective wildtype control mice. Remarkably, not only intestinal, but also systemic infection-induced immune responses were less pronounced in IL-18-/- mice as indicated by lower TNF, IFN-γ and IL-6 serum levels as compared to wildtype mice. Conclusion/Significance We here show for the first time that IL-18 is essentially involved in mediating C. jejuni infection in the gnotobiotic mouse model. Future studies need to further unravel the underlying regulatory mechanisms orchestrating pathogen-host interaction

    Immune responses upon Campylobacter jejuni infection of secondary abiotic mice lacking nucleotide-oligomerization-domain-2

    Get PDF
    Background Campylobacter jejuni infections are of rising importance worldwide. Given that innate immune receptors including nucleotide-oligomerization- domain-2 (Nod2) are essentially involved in combating enteropathogenic infections, we here surveyed the impact of Nod2 in murine campylobacteriosis. Methods and results In order to overcome physiological colonization resistance preventing from C. jejuni infection, we generated secondary abiotic Nod2−/− and wildtype (WT) mice by broad-spectrum antibiotic treatment. Mice were then perorally infected with C. jejuni strain 81-176 on 2 consecutive days and could be stably colonized by the pathogen at high loads. Notably, Nod2 deficiency did not affect gastrointestinal colonization properties of C. jejuni. Despite high intestinal pathogenic burdens mice were virtually uncompromised and exhibited fecal blood in single cases only. At day 7 postinfection (p.i.) similar increases in numbers of colonic epithelial apoptotic cells could be observed in mice of either genotype, whereas C. jejuni infected Nod2−/− mice displayed more distinct regenerative properties in the colon than WT controls. C. jejuni infection was accompanied by increases in distinct immune cell populations such as T lymphocytes and regulatory T cells in mice of either genotype. Increases in T lymphocytes, however, were less pronounced in large intestines of Nod2−/− mice at day 7 p.i. when compared to WT mice, whereas colonic numbers of B lymphocytes were elevated in WT controls only upon C. jejuni infection. At day 7 p.i., colonic pro-inflammatory mediators including nitric oxide, TNF, IFN-γ and IL-22 increased more distinctly in Nod2−/− as compared to WT mice, whereas C. jejuni induced IL-23p19 and IL-18 levels were lower in the large intestines of the former. Converse to the colon, however, ileal concentrations of nitric oxide, TNF, IFN-γ, IL-6 and IL-10 were lower in Nod2−/− as compared to WT mice at day 7 p.i. Even though MUC2 was down-regulated in C. jejuni infected Nod2−/− mice, this did not result in increased pathogenic translocation from the intestinal tract to extra-intestinal compartments. Conclusion In secondary abiotic mice, Nod2 signaling is involved in the orchestrated host immune responses upon C. jejuni infection, but does not control pathogen loads in the gastrointestinal tract

    Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goldmann, K., Boeddinghaus, R. S., Klemmer, S., Regan, K. M., Heintz-Buschart, A., Fischer, M., Prati, D., Piepho, H., Berner, D., Marhan, S., Kandeler, E., Buscot, F., & Wubet, T. Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environmental Microbiology, 22(3),(2020): 873-888, doi:10.1111/1462-2920.14653.Soils provide a heterogeneous environment varying in space and time; consequently, the biodiversity of soil microorganisms also differs spatially and temporally. For soil microbes tightly associated with plant roots, such as arbuscular mycorrhizal fungi (AMF), the diversity of plant partners and seasonal variability in trophic exchanges between the symbionts introduce additional heterogeneity. To clarify the impact of such heterogeneity, we investigated spatiotemporal variation in AMF diversity on a plot scale (10 × 10 m) in a grassland managed at low intensity in southwest Germany. AMF diversity was determined using 18S rDNA pyrosequencing analysis of 360 soil samples taken at six time points within a year. We observed high AMF alpha‐ and beta‐diversity across the plot and at all investigated time points. Relationships were detected between spatiotemporal variation in AMF OTU richness and plant species richness, root biomass, minimal changes in soil texture and pH. The plot was characterized by high AMF turnover rates with a positive spatiotemporal relationship for AMF beta‐diversity. However, environmental variables explained only ≈20% of the variation in AMF communities. This indicates that the observed spatiotemporal richness and community variability of AMF was largely independent of the abiotic environment, but related to plant properties and the cooccurring microbiome.We thank the managers of the three Exploratories, Kirsten Reichel‐Jung, Swen Renner, Katrin Hartwich, Sonja Gockel, Kerstin Wiesner, and Martin Gorke for their work in maintaining the plot and project infrastructure; Christiane Fischer and Simone Pfeiffer for giving support through the central office, Michael Owonibi and Andreas Ostrowski for managing the central data base, and Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Ernst‐Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. The work has been funded by the DFG Priority Program 1374 ‘Infrastructure‐Biodiversity‐Exploratories’ (BU 941/22‐1, BU 941/22‐3, KA 1590/8‐2, KA 1590/8‐3). Field work permits were issued by the responsible state environmental office of Baden‐Württemberg (according to § 72 BbgNatSchG). Likewise, we kindly thank Beatrix Schnabel, Melanie Günther and Sigrid Härtling for 454 sequencing in Halle. AHB gratefully acknowledges the support of the German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig funded by the German Research Foundation (FZT 118). Authors declare no conflict of interests

    Studies on mechanisms of augmentation of liver regeneration by cyclosporine and FK 506

    Get PDF
    Evidence could not be found of immune modulation of liver regeneration. The powerful immunosuppressive drug FK 506, which augments the response after partial hepatectomy in normal rats, had the same effect in T cell—deficient nude rats. The cytotoxicity of natural killer cells in treated nude rats was not significantly changed by FK 506 therapy. However, the serum of FK 506—treated nude rats increased hepatocyte proliferation when added to third‐party hepatocyte cultures, suggesting that FK 506 had induced a serum growth factor in the nude rats or had suppressed an inhibitory factor. A hypothesis was advanced that FK 506 (and cyclosporine) affects hepatic growth by nonimmunological pathways. (HEPATOLOGY 1991;14:140–143.) Copyright © 1991 American Association for the Study of Liver Disease

    Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    Full text link
    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N (δ15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice
    corecore