2,110 research outputs found
Thermodynamic Constraints on Nitrogen Transformations and Other Biogeochemical Processes at Soil-Stream Interfaces
There is much interest in biogeochemical processes that occur at the interface between soils and streams since, at the scale of landscapes, these habitats may function as control points for fluxes of nitrogen (N) and other nutrients from terrestrial to aquatic ecosystems. Here we examine whether a thermodynamic perspective can enhance our mechanistic and predictive understanding of the biogeochemical function of soil-stream interfaces, by considering how microbial communities interact with variations in supplies of electron donors and acceptors. Over a two-year period we analyzed \u3e1400 individual samples of subsurface waters from networks of sample wells in riparian wetlands along Smith Creek, a first-order stream draining a mixed forested-agricultural landscape in southwestern Michigan, USA. We focused on areas where soil water and ground water emerged into the stream, and where we could characterize subsurface flow paths by measures of hydraulic head and/or by in situ additions of hydrologic tracers. We found strong support for the idea that the biogeochemical function of soil-stream interfaces is a predictable outcome of the interaction between microbial communities and supplies of electron donors and acceptors. Variations in key electron donors and acceptors (NO3â,N2O,NH4+,SO42â,CH4 role= presentation \u3eNO3â,N2O,NH4+,SO42â,CH4
,, and dissolved organic carbon [DOC]) closely followed predictions from thermodynamic theory. Transformations of N and other elements resulted from the response of microbial communities to two dominant hydrologic flow paths: (1) horizontal flow of shallow subsurface waters with high levels of electron donors (i.e., DOC, CH4, and NH4+),, and (2) near-stream vertical upwelling of deep subsurface waters with high levels of energetically favorable electron acceptors (i.e., NO3-,N2O, and SO42-).. Our results support the popular notion that soil-stream interfaces can possess strong potential for removing dissolved N by denitrification. Yet in contrast to prevailing ideas, we found that denitrification did not consume all NO3- that reached the soil-stream interface via subsurface flow paths. Analyses of subsurface N chemistry and natural abundances of Ύ 15N in NO3- and NH4+ suggested a narrow near-stream region as functionally the most important location for NO3- consumption by denitrification. This region was characterized by high throughput of terrestrially derived water, by accumulation of dissolved NO3- and N2O, and by low levels of DOC. Field experiments supported our hypothesis that the sustained ability for removal of dissolved NO3- and N2O should be limited by supplies of oxidizable carbon via shallow flowpaths. In situ additions of acetate, succinate, and propionate induced rates of NO3- removal (⌠1.8 g N· m-2· d-1) that were orders of magnitude greater than typically reported from riparian habitats. We propose that the immediate near-stream region may be especially important for determining the landscape-level function of many riparian wetlands. Management efforts to optimize the removal of NO3- by denitrification ought to consider promoting natural inputs of oxidizable carbon to this near-stream region
A Transiting Hot Jupiter Orbiting a Metal-Rich Star
We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a
star with unusually high metallicity, [Fe/H] = +0.34 +/- 0.04. The planet's
mass is about 2/3 that of Jupiter, Mp = 0.67 Mj, and the radius is thirty
percent larger than that of Jupiter, Rp = 1.32 Rj, resulting in a density of
0.35 g/cc, a fairly typical value for such a planet. The orbital period is P =
3.235 days. The host star is both more massive than the Sun, Mstar = 1.21 Msun,
and larger than the Sun, Rstar = 1.39 Rsun.Comment: 12 pages, 2 figures, submitted to the Astrophysical Journal Letter
Specifying computer-supported collaboration scripts
Collaboration scripts are activity programs which aim to foster collaborative learning by structuring interaction between learners. Computer-supported collaboration scripts generally suffer from the problem of being restrained to a specific learning platform and learning context. A standardization of collaboration scripts first requires a specification of collaboration scripts that integrates multiple perspectives from computer science, education and psychology. So far, only few and limited attempts at such specifications have been made. This paper aims to consolidate and expand these approaches in light of recent findings and to propose a generic framework for the specification of collaboration scripts. The framework enables a description of collaboration scripts using a small number of components (participants, activities, roles, resources and groups) and mechanisms (task distribution, group formation and sequencing)
Local well-posedness for membranes in the light cone gauge
In this paper we consider the classical initial value problem for the bosonic
membrane in light cone gauge. A Hamiltonian reduction gives a system with one
constraint, the area preserving constraint. The Hamiltonian evolution equations
corresponding to this system, however, fail to be hyperbolic. Making use of the
area preserving constraint, an equivalent system of evolution equations is
found, which is hyperbolic and has a well-posed initial value problem. We are
thus able to solve the initial value problem for the Hamiltonian evolution
equations by means of this equivalent system. We furthermore obtain a blowup
criterion for the membrane evolution equations, and show, making use of the
constraint, that one may achieve improved regularity estimates.Comment: 29 page
KELT-6b: A P~7.9 d Hot Saturn Transiting a Metal-Poor Star with a Long-Period Companion
We report the discovery of KELT-6b, a mildly-inflated Saturn-mass planet
transiting a metal-poor host. The initial transit signal was identified in
KELT-North survey data, and the planetary nature of the occulter was
established using a combination of follow-up photometry, high-resolution
imaging, high-resolution spectroscopy, and precise radial velocity
measurements. The fiducial model from a global analysis including constraints
from isochrones indicates that the V=10.38 host star (BD+31 2447) is a mildly
evolved, late-F star with T_eff=6102 \pm 43 K, log(g_*)=4.07_{-0.07}^{+0.04}
and [Fe/H]=-0.28 \pm 0.04, with an inferred mass M_*=1.09 \pm 0.04 M_sun and
radius R_star=1.58_{-0.09}^{+0.16} R_sun. The planetary companion has mass
M_P=0.43 \pm 0.05 M_J, radius R_P=1.19_{-0.08}^{+0.13} R_J, surface gravity
log(g_P)=2.86_{-0.08}^{+0.06}, and density rho_P=0.31_{-0.08}^{+0.07}
g~cm^{-3}. The planet is on an orbit with semimajor axis a=0.079 \pm 0.001 AU
and eccentricity e=0.22_{-0.10}^{+0.12}, which is roughly consistent with
circular, and has ephemeris of T_c(BJD_TDB)=2456347.79679 \pm 0.00036 and
P=7.845631 \pm 0.000046 d. Equally plausible fits that employ empirical
constraints on the host star parameters rather than isochrones yield a larger
planet mass and radius by ~4-7%. KELT-6b has surface gravity and incident flux
similar to HD209458b, but orbits a host that is more metal poor than HD209458
by ~0.3 dex. Thus, the KELT-6 system offers an opportunity to perform a
comparative measurement of two similar planets in similar environments around
stars of very different metallicities. The precise radial velocity data also
reveal an acceleration indicative of a longer-period third body in the system,
although the companion is not detected in Keck adaptive optics images.Comment: Published in AJ, 17 pages, 15 figures, 6 table
Quantum Imaging with Incoherently Scattered Light from a Free-Electron Laser
The advent of accelerator-driven free-electron lasers (FEL) has opened new
avenues for high-resolution structure determination via diffraction methods
that go far beyond conventional x-ray crystallography methods. These techniques
rely on coherent scattering processes that require the maintenance of
first-order coherence of the radiation field throughout the imaging procedure.
Here we show that higher-order degrees of coherence, displayed in the intensity
correlations of incoherently scattered x-rays from an FEL, can be used to image
two-dimensional objects with a spatial resolution close to or even below the
Abbe limit. This constitutes a new approach towards structure determination
based on incoherent processes, including Compton scattering, fluorescence
emission or wavefront distortions, generally considered detrimental for imaging
applications. Our method is an extension of the landmark intensity correlation
measurements of Hanbury Brown and Twiss to higher than second-order paving the
way towards determination of structure and dynamics of matter in regimes where
coherent imaging methods have intrinsic limitations
Kepler-20: A Sun-like Star with Three Sub-Neptune Exoplanets and Two Earth-size Candidates
We present the discovery of the Kepler-20 planetary system, which we
initially identified through the detection of five distinct periodic transit
signals in the Kepler light curve of the host star 2MASSJ19104752+4220194. We
find a stellar effective temperature Teff=5455+-100K, a metallicity of
[Fe/H]=0.01+-0.04, and a surface gravity of log(g)=4.4+-0.1. Combined with an
estimate of the stellar density from the transit light curves we deduce a
stellar mass of Mstar=0.912+-0.034 Msun and a stellar radius of
Rstar=0.944^{+0.060}_{-0.095} Rsun. For three of the transit signals, our
results strongly disfavor the possibility that these result from astrophysical
false positives. We conclude that the planetary scenario is more likely than
that of an astrophysical false positive by a factor of 2e5 (Kepler-20b), 1e5
(Kepler-20c), and 1.1e3 (Kepler-20d), sufficient to validate these objects as
planetary companions. For Kepler-20c and Kepler-20d, the blend scenario is
independently disfavored by the achromaticity of the transit: From Spitzer data
gathered at 4.5um, we infer a ratio of the planetary to stellar radii of
0.075+-0.015 (Kepler-20c) and 0.065+-0.011 (Kepler-20d), consistent with each
of the depths measured in the Kepler optical bandpass. We determine the orbital
periods and physical radii of the three confirmed planets to be 3.70d and
1.91^{+0.12}_{-0.21} Rearth for Kepler-20b, 10.85 d and 3.07^{+0.20}_{-0.31}
Rearth for Kepelr-20c, and 77.61 d and 2.75^{+0.17}_{-0.30} Rearth for
Kepler-20d. From multi-epoch radial velocities, we determine the masses of
Kepler-20b and Kepler-20c to be 8.7\+-2.2 Mearth and 16.1+-3.5 Mearth,
respectively, and we place an upper limit on the mass of Kepler-20d of 20.1
Mearth (2 sigma).Comment: accepted by ApJ, 58 pages, 12 figures revised Jan 2012 to correct
table 2 and clarify planet parameter extractio
- âŠ