2,060 research outputs found

    Dark energy fifth forces in torsion pendulum experiments

    Full text link
    The chameleon scalar field is a matter-coupled dark energy candidate whose nonlinear self-interaction partially screens its fifth force at laboratory scales. Nevertheless, small-scale experiments such as the torsion pendulum can provide powerful constraints on chameleon models. Here we develop a simple approximation for computing chameleon fifth forces in torsion pendulum experiments such as Eot-Wash. We show that our approximation agrees well with published constraints on the quartic chameleon, and we use it to extend these constraints to a much wider range of models. Finally, we forecast the constraints which will result from the next-generation Eot-Wash experiment, and show that this experiment will exclude a wide range of quantum-stable models.Comment: 15 pages, 17 figures; matches version accepted by PR

    Structural studies on carbon materials for advanced space technology. Part 1: Structure and oxidation behavior of some carbon/carbon composite materials

    Get PDF
    The microstructure and some microstructural effects of oxidation have been investigated for laminar carbon fiber cloth/cloth binder matrix composite materials. It was found that cloth wave is important in determining the macrostructure of the composites X-ray diffraction analysis showed that the composites were more graphitic than the constituent fiber phases, indicating a graphitic binder matrix phase. Various tests which were conducted to investigate specific properties of the material are described. It was learned that under the moderate temperature and oxidant flow conditions studied, C-700, 730 materials exhibit superior oxidation resistance primarily because of the inhibiting influence of the graphitized binder matrix

    The prevalence of species and strains in the human microbiome: A resource for experimental efforts

    Get PDF
    Experimental efforts to characterize the human microbiota often use bacterial strains that were chosen for historical rather than biological reasons. Here, we report an analysis of 380 whole-genome shotgun samples from 100 subjects from the NIH Human Microbiome Project. By mapping their reads to 1,751 reference genome sequences and analyzing the resulting relative strain abundance in each sample we present metrics and visualizations that can help identify strains of interest for experimentalists. We also show that approximately 14 strains of 10 species account for 80% of the mapped reads from a typical stool sample, indicating that the function of a community may not be irreducibly complex. Some of these strains account for >20% of the sequence reads in a subset of samples but are absent in others, a dichotomy that could underlie biological differences among subjects. These data should serve as an important strain selection resource for the community of researchers who take experimental approaches to studying the human microbiota

    Constraints on Light Pseudoscalars Implied by Tests of the Gravitational Inverse-Square Law

    Get PDF
    The exchange of light pseudoscalars between fermions leads to a spin-independent potential in order g^4, where g is the Yukawa pseudoscalar-fermion coupling constant. This potential gives rise to detectable violations of both the weak equivalence principle (WEP) and the gravitational inverse-square law (ISL), even if g is quite small. We show that when previously derived WEP constraints are combined with those arisingfrom ISL tests, a direct experimental limit on the Yukawa coupling of light pseudoscalars to neutrons can be inferred for the first time (g_n^2/4pi < 1.6 \times 10^-7), along with a new (and significantly improved) limit on the coupling of light pseudoscalars to protons.Comment: 12 pages, Revtex, with 1 Postscript figure (submitted to Physical Review Letters

    Constraints on flavor-dependent long range forces from solar neutrinos and KamLAND

    Get PDF
    Flavor-dependent long range (LR) leptonic forces, like those mediated by the LeLμL_e-L_\mu or LeLτL_e -L_\tau gauge bosons, constitute a minimal extension of the standard model that preserves its renormalizability. We study the impact of such interactions on the solar neutrino oscillations when the interaction range RLRR_{LR} is much larger than the Earth-Sun distance. The LR potential can dominate over the standard charged current potential inside the Sun in spite of strong constraints on the coupling α\alpha of the LR force coming from the atmospheric neutrino data and laboratory search for new forces. We demonstrate that the solar and atmospheric neutrino mass scales do not get trivially decoupled even if θ13\theta_{13} is vanishingly small. In addition, for \alpha \gsim 10^{-52} and normal hierarchy, resonant enhancement of θ13\theta_{13} results in nontrivial energy dependent effects on the νe\nu_e survival probability. We perform a complete three generation analysis, and obtain constraints on α\alpha through a global fit to the solar neutrino and KamLAND data. We get the 3σ3\sigma limits αeμ<3.4×1053\alpha_{e\mu} < 3.4 \times 10^{-53} and αeτ<2.5×1053\alpha_{e\tau} < 2.5 \times 10^{-53} when RLRR_{LR} is much smaller than our distance from the galactic center. With larger RLRR_{LR}, the collective LR potential due to all the electrons in the galaxy becomes significant and the constraints on α\alpha become stronger by upto two orders of magnitude.Comment: 25 pages, 7 figure

    Proposal for an experiment to search for Randall-Sundrum type corrections to Newton's law of gravitation

    Full text link
    String theory, as well as the string inspired brane-world models such as the Randall-Sundrum (RS) one, suggest a modification of Newton's law of gravitation at small distance scales. Search for modifications of standard gravity is an active field of research in this context. It is well known that short range corrections to gravity would violate the Newton-Birkhoff theorem. Based on calculations of RS type non-Newtonian forces for finite size spherical bodies, we propose a torsion balance based experiment to search for the effects of violation of this celebrated theorem valid in Newtonian gravity as well as the general theory of relativity. We explain the main principle behind the experiment and provide detailed calculations suggesting optimum values of the parameters of the experiment. The projected sensitivity is sufficient to probe the Randall-Sundrum parameter up to 10 microns.Comment: 4 pages and 5 figures, figures improved, minor clarifications and few references added, final version to appear in PRD (rapid communications

    Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions

    Full text link
    We report an improved dynamic determination of the Casimir pressure between two plane plates obtained using a micromachined torsional oscillator. The main improvements in the current experiment are a significant suppression of the surface roughness of the Au layers deposited on the interacting surfaces, and a decrease in the experimental error in the measurement of the absolute separation. A metrological analysis of all data permitted us to determine both the random and systematic errors, and to find the total experimental error as a function of separation at the 95% confidence level. In contrast to all previous experiments on the Casimir effect, our smallest experimental error (0.5\sim 0.5%) is achieved over a wide separation range. The theoretical Casimir pressures in the experimental configuration were calculated by the use of four theoretical approaches suggested in the literature. All corrections to the Casimir force were calculated or estimated. All theoretical errors were analyzed and combined to obtain the total theoretical error at the 95% confidence level. Finally, the confidence interval for the differences between theoretical and experimental pressures was obtained as a function of separation. Our measurements are found to be consistent with two theoretical approaches utilizing the plasma model and the surface impedance over the entire measurement region. Two other approaches to the thermal Casimir force, utilizing the Drude model or a special prescription for the determination of the zero-frequency contribution to the Lifshitz formula, are excluded on the basis of our measurements at the 99% and 95% confidence levels, respectively. Finally, constraints on Yukawa-type hypothetical interactions are strengthened by up to a factor of 20 in a wide interaction range.Comment: 43 pages, 15 figures, elsart.cls is used. Accepted for publication in Annals of Physics. (Several misprints in the text are corrected.

    Comment on "Anomalies in electrostatic calibration for the measurement of the Casimir force in a sphere-plane geometry"

    Get PDF
    Recently W. J. Kim, M. Brown-Hayes, D. A. R. Dalvit, J. H. Brownell, and R. Onofrio [Phys. Rev. A, v.78, 036102(R) (2008)] performed electrostatic calibrations for a plane plate above a centimeter-size spherical lens at separations down to 20-30 nm and observed "anomalous behavior". It was found that the gradient of the electrostatic force does not depend on separation as predicted on the basis of a pure Coulombian contribution. Some hypotheses which could potentially explain the deviation from the expected behavior were considered, and qualitative arguments in favor of the influence of patch surface potentials were presented. We demonstrate that for the large lenses at separations of a few tens nanometers from the plate, the electrostatic force law used by the authors is not applicable due to possible deviations of the mechanically polished and ground lens surface from a perfect spherical shape. A model is proposed which explains the observed "anomalous behavior" using the standard Coulombian force.Comment: 9 pages, 3 figure
    corecore