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Recently Kim et al. �Phys. Rev. A 78, 020101�R� �2008�� performed electrostatic calibrations for a plane
plate above a centimeter-size spherical lens at separations down to 20–30 nm and observed “anomalous
behavior.” It was found that the gradient of the electrostatic force does not depend on separation as predicted
on the basis of a pure Coulomb contribution. Some hypotheses which could potentially explain the deviation
from the expected behavior were considered, and qualitative arguments in favor of the influence of patch
surface potentials were presented. We demonstrate that for the large lenses at separations of a few tens of
nanometers from the plate, the electrostatic force law used by the authors is not applicable due to possible
deviations of the mechanically polished and ground lens surface from a perfect spherical shape. A model is
proposed which provides a possible explanation for the observed anomalous behavior using the standard
Coulomb force.

DOI: 10.1103/PhysRevA.79.026101 PACS number�s�: 12.20.Fv, 03.70.�k, 04.80.Cc, 11.10.Wx

In Ref. �1�, anomalies in the electrostatic calibration for
the measurement of the Casimir force in a sphere-plane ge-
ometry were found. Precision electrostatic calibrations in the
sphere-plane geometry have attracted much attention in the
last few years in connection with measurements of the Ca-
simir force �2–16�. In these measurements electrostatic cali-
brations play an important role. They allow precise indepen-
dent determination of such basic quantities as absolute
separation, cantilever spring constants, sphere radii, param-
eters of the micromechanical oscillator, and the contact po-
tential difference of the grounded test bodies. Because of
this, any inaccuracy in the theoretical expression for the elec-
tric force used in the calibration introduces additional sys-
tematic errors in the measurement data for the Casimir force
and invites questions on the validity of the experimental re-
sults that are obtained.

Reference �1� presents the experimental data from electro-
static calibrations in the configuration of a Si plate above a
large spherical lens of radius R=30.9�0.15 mm, both cov-
ered with an Au film. In these calibrations, separation dis-
tances d down to a few tens of nanometers from the point of
contact between the plate and the sphere were explored. Sur-
prisingly, instead of the expected d−2 distance dependence of
the gradient of the electric force, as is given by the main
contribution to the exact result in the sphere-plate configura-
tion �11� or, equivalently, by the proximity force approxima-
tion, a dependence of the order d−1.7 was observed from four
separate experimental sequences. The values of the contact

potential difference Vc, in at least two sequences, were found
to be separation dependent. Reference �1� discusses five hy-
potheses which could potentially explain a deviation from
the expected force law, specifically, static deflection of the
cantilever, thermal drift, nonlinearity of the piezoelectric
transducer, nonlinear oscillations of the cantilever, and the
surface roughness. It was found that none of these explain
the anomaly. A sixth hypothesis, favored by the authors, is
the effect of patch surface potentials. However, no specific
arguments in its favor were provided, except for the obser-
vation that Vc is separation dependent in at least two se-
quences. This is, however, simply an observation that the
electric force gradient behaves anomalously, rather than a
determination of the specific physical cause. On this basis
the authors argue that their “findings affect the accuracy of
the electrostatic calibrations and invite reanalysis of previous
determinations of the Casimir force.”

Below we demonstrate that the observed anomalies can be
explained using the standard distance dependence of the
electric force, if one takes into account deviations of the lens
surface from a perfect spherical shape. Such deviations are
unavoidably present on any spherical surface of centimeter
size. Hence, they preclude the use of the simplest formula-
tion of the proximity force approximation for a constant ra-
dius of curvature at short separations as used in the paper. In
the conclusion we formulate some basic requirements for
precision calibration procedures and emphasize that all pre-
vious experiments on the measurement of the Casimir force
�2–16� are irrelevant to the phenomenon observed in �1� be-
cause they are performed at large separations �2�, or with
spheres of much smaller radii �3–16�.

Using the proximity force approximation �17�, Ref. �1�
represents the gradient of the electric force between a
centimeter-size spherical lens and plate as
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Fel� = ��0
R�V − Vc�2

d2 , �1�

where V is the applied voltage, Vc is the contact potential, d
is the gap separation, and �0 is the permittivity of vacuum.
�The minus sign on the right-hand side of this formula in �1�
is a misprint.� The frequency shift of the cantilever due to an
external force is given by

�2 − �0
2 = −

1

4�2meff
Fel� , �2�

where meff is the effective mass of the oscillator. Using Eq.
�1�, this frequency shift can be rearranged to the form

�2 − �0
2 = − kel�d��V − V0�2, kel�d� =

�0R

4�meffd
2 . �3�

However, as noted in �1�, the experimental data from four
separate sequences follow a power law, similar to the d−2

dependence in Eqs. �1� and �3�, but with powers
−1.70�0.01, −1.77�0.02, −1.80�0.01, and −1.54�0.02,
which are far from the expected value of −2.

As mentioned above, Ref. �1� discusses several hypoth-
eses which could explain the observed anomaly and discards
all of them. As a possible explanation the effect of patch
surface potentials was considered, but only qualitative argu-
ments that this effect might be responsible for the observed
anomalous behavior of the electrostatic force were provided.
These arguments, however, do not take into account Refs.
�8,10�, where the role of patches due to the grains of poly-
crystalline metal film in the measurements of the Casimir
force by means of an atomic force microscope �8� and a
micromechanical torsional oscillator �10� was specifically in-
vestigated in detail. Thus, in �8� it was concluded that the
electric force due to patch potentials of this type contributes
only 0.23% and 0.008% of the Casimir force at separations
d=62 nm �the closest separation in this experiment� and 100
nm, respectively. These results are based on the theoretical
expressions of Ref. �18� and on the determination of the
maximum and minimum sizes of grains in gold layers cov-
ering the test bodies using the atomic force microscopy im-
ages of the surfaces of the plate and sphere. With respect to
the electric force Fel due to the applied potential V=0.2 V,
the patch effect contributes only 0.064% and 0.0011% at
separations of 62 and 100 nm, respectively �in this experi-
ment the contact potential was determined to be Vc
=3�3 mV�. According to the analysis of Ref. �10�, at the
shortest separations, d=160 and 170 nm in the experiment
using a micromechanical oscillator, patch potentials contrib-
ute only 0.037% and 0.027% of the Casimir pressure. With
respect to the electric pressure Pel due to V−Vc=0.2 V, here
the patch effect contributes 0.19% and 0.13% at d=160 and
170 nm, respectively. There is another type of patch potential
due to scratches, adsorbates, chemical contaminants, and
dust on the surface which depends on the applied voltage
and, thus, significantly influences the calibration measure-
ments making Vc separation dependent. It is generally recog-
nized that such poor-quality samples should not be used in
precision experiments on the Casimir force. Thus, it is un-

likely that patch charges are responsible for the anomalous
distance dependence of the gradient of the electric force ob-
served in Ref. �1�.

Here, we present an alternative explanation for the obser-
vation of Ref. �1� that the power of the distance in the gra-
dient of the electric force differs from −2. A key point to note
is that Ref. �1� used very large spheres of radius more than 3
cm, which approached as close as 20–30 nm to the plate. In
such a situation the proximity force approximation in the
form �1� is not valid. To see this we note that Eq. �1� was
derived for a perfect spherical lens with a constant curvature
radius R at each point of the surface. Reference �1� mentions
the deviations from ideal spherical geometry and its possible
role at the smallest distances but considers this only in con-
nection with the surface roughness. Using the measured rms
values of roughness from 1 to 2 nm, the authors find the
respective corrections negligible. In reality, however, sur-
faces of large lenses are far from perfect, even excluding the
rms roughness from consideration. In particular, the typical
surface quality of centimeter-size surfaces is usually charac-
terized in terms of the scratch and dig optical surface speci-
fication data. This means that depending on the quality of
lens used, bubbles or pits with a maximal diameter varying
from 30 �m to 1.2 mm are allowed on the surface. There
may also be scratches on the surface with a width varying
from 3 to 120 �m �19�. Surface accuracy is characterized by
the power and irregularity, where power defines the deviation
of the fabricated surface radius from the radius of a test
surface. When the separation distance between the sphere
and the plate is sufficiently large, the deviations from perfect
spherical shape can be neglected. Only in this case is the
global curvature radius R important. At short separations,
however, local radii of curvature, which may differ from the
global radius by several orders of magnitude due to the me-
chanical polishing and grinding of glass lens, contribute sig-
nificantly to the result.

Based on the above information, we present in Fig. 1 a
model of a spherical lens of radius R containing a region AB
of a larger curvature radius RAB=1.6R=49.4 mm and a
spherical bubble of RCD=30 �m radius. We emphasize that
the height of sector AB is H=250 nm and the height of
sector CD is h=8 nm. The imperfections in the large spheri-
cal surface, as shown �not to scale� in Fig. 1, are well below
the error in the determination of the lens radius �R
=0.15 mm. Thus, for a perfect sphere of radius R, sector AB

would have height H̃=400 nm. This means that the maxi-
mum flattening of the spherical surface in region AB is only
150 nm, i.e., 0.1% of the allowed error �R in the radius R.

The application of the proximity force approximation to
the configuration in Fig. 1 at small separations results in the
modified coefficient

�

� �

�

FIG. 1. Model of the surface of the spherical lens of radius R
with local deviations from perfect shape �see text for detail�. Figure
is not to scale.
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kel
mod�d� =

�0

4�meff
�RCD

d2 +
RAB − RCD

�d + h�2 −
RAB − R

�d + h + H�2� .

�4�

Numerically, kel
mod�d0�=kel�d0� at d0=30 nm. This equation

means that the gradient of the electric force depends on the
separation distance in a far different way than in Eq. �1�. As
an illustration, in Fig. 2�a� we plot the normalized coeffi-
cients kel, as given by Eq. �3� �solid line 1�, and kel

mod, as
given by Eq. �4� �solid line 2�, as functions of separation.
The normalization factor is equal to N0��0 / �4�meff�
�1013. It can be seen that there is a significant deviation
between the coefficients obtained for a perfect spherical lens
and that for the surface shown in Fig. 1. To describe this
deviation quantitatively, in Fig. 2�b� we plot the same lines 1
and 2 in a double-logarithmic scale. In the same figure the

dashed line shows the dependence of k̃el /N0 on separation in
accordance with

k̃el�d� =
�0R

4�meffd0
0.3d1.7 . �5�

This expression having a power of −1.7 instead of −2 is
shown in Ref. �1� to be consistent with the experimental data
of the measurements of the electric force between a large
lens and a plate at small separation distances. As is seen in
Fig. 2�b�, the experimentally consistent dependence �5� is
well reproduced by the solid line 2 obtained using the stan-
dard electric force gradient taking into account local devia-
tions from a perfect spherical shape, as presented in Fig. 1.

We emphasize that Fig. 1 shows only one crude model of
possible deviations from sphericity specific for large spheri-
cal surfaces. In precision measurements one should carefully
investigate the interaction region of the large spherical sur-
face microscopically and compute the electric force numeri-
cally by solving Poisson’s equation �as done in Ref. �16��.
These complications do not arise when using spheres with
much smaller radii. Specifically, the surfaces of polystyrene
spheres of about 100 �m radius made from liquid phase are
extremely smooth due to surface tension. The investigation
of the surface quality of such spheres using a scanning elec-
tron microscope did not reveal any scratches or bubbles.
However, the same investigation has shown the presence of
bubbles in some 300 �m and larger polystyrene spheres.

In precision electrostatic calibrations, as a part of experi-
ments on measuring the Casimir force, the following rule is
helpful. Depending on the size and quality of a spherical
body, the minimal separation distance should be chosen in
such a way that the contact potential Vc and other basic quan-
tities determined from calibration do not depend on separa-
tion where the calibration procedure is performed. As an ex-
ample, in Fig. 3 we present previously unpublished
calibration data for Vc in the experiment on the indirect dy-
namic determination of the Casimir pressure between two
parallel plates by means of a sphere oscillating above a mi-
cromechanical torsional oscillator �14�. In this experiment, a
sapphire sphere of R=151.3�0.2 �m radius was used and
the measurements of the Casimir pressure were performed
over the separation range from 162 to 746 nm. In Fig. 3 the
calibration results for Vc obtained at 500 different separation
distances ranging from 160.4 to 5150.1 nm are shown as dots
as a function of separation. It is seen that the results do not
depend on separation over a wide separation region includ-
ing the entire measurement range of the Casimir pressure.
This confirms that proportions between the sphere radius and
the minimum separation are determined correctly. The result-
ing mean contact potential is Vc=15.29 mV with the stan-
dard deviation equal to 0.13 mV. The equality Vc=const can
also be considered as an indirect confirmation of the fact that
the interacting regions of the surfaces are clean.

One more important requirement for precision measure-
ments of the Casimir force is that the piezo creep and drift
should be calibrated and subtracted. In contrast to experi-
ment �5�, where continuous voltages were applied to the pi-
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FIG. 2. The normalized coefficient kel in �a� natural and �b�
double logarithmic scales as function of separation. Solid lines 1
and 2 indicate kel and kel

mod for a perfect sphere and for a sphere with
local deviations from perfect sphericity. The dashed line demon-

strates k̃el decreasing as d−1.7.
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FIG. 3. Calibration results for the contact potential Vc at differ-
ent separations are shown as dots. The solid line indicates the mean
value Vc=15.29 mV with the standard deviation equal to 0.13 mV.
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ezo crystal which was interferometrically calibrated, or to
experiments �10,14�, where the piezo crystal was monitored
interferometrically with a feedback, Ref. �1� applies to the
piezo crystal only static voltages and takes 8–10 min to make
a measurement. Then the creep is measured at some large
voltage and is scaled linearly for the measurement time. This
procedure may lead to errors because the piezo drift is non-
linear with the applied voltage, which might be critical at
short separation distances.

One can conclude that contrary to the conclusion of Ref.
�1� the observed “anomalies” are irrelevant to the precision
experiments on measuring the Casimir force �2,3,6,7� men-
tioned in �1� and all other performed experiments previously
using the sphere-plate configuration �4,5,8–16�. The experi-
mental precision of these experiments, and the measure of
agreement of the obtained results with theory, remain the
same as was stated in the original publications after taking
account of subsequently published corrections, improve-
ments, and reanalyses using more rigorous statistical ap-
proaches. �For example, the experimental data of Ref. �5�
were later reanalyzed in Ref. �20�.� It should be mentioned
that Ref. �1� incorrectly ascribes the claimed accuracy from
0.1% to 5% to the experiments �2,3,6,7�. In fact the claimed

accuracy of these experiments ranges from 1% to 5%. Pres-
ently the most precise determination of the Casimir pressure
using a micromechanical oscillator is characterized by an
experimental error of 0.2% and by a 1.9% measure of agree-
ment between experiment and theory at the shortest separa-
tion of 162 nm �14�. This experiment, however, is not men-
tioned in Ref. �1�.

The above remarks demonstrate that the anomalous be-
havior of the electrostatic signal observed in Ref. �1� has a
clear explanation in the mistaken assumption of a perfect
spherical shape for a mechanically polished and ground large
glass lens at nanoscale distances from a plate.
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