905 research outputs found

    Constraints on Light Pseudoscalars Implied by Tests of the Gravitational Inverse-Square Law

    Get PDF
    The exchange of light pseudoscalars between fermions leads to a spin-independent potential in order g^4, where g is the Yukawa pseudoscalar-fermion coupling constant. This potential gives rise to detectable violations of both the weak equivalence principle (WEP) and the gravitational inverse-square law (ISL), even if g is quite small. We show that when previously derived WEP constraints are combined with those arisingfrom ISL tests, a direct experimental limit on the Yukawa coupling of light pseudoscalars to neutrons can be inferred for the first time (g_n^2/4pi < 1.6 \times 10^-7), along with a new (and significantly improved) limit on the coupling of light pseudoscalars to protons.Comment: 12 pages, Revtex, with 1 Postscript figure (submitted to Physical Review Letters

    Testing the Dirac equation

    Get PDF
    The dynamical equations which are basic for the description of the dynamics of quantum felds in arbitrary space--time geometries, can be derived from the requirements of a unique deterministic evolution of the quantum fields, the superposition principle, a finite propagation speed, and probability conservation. We suggest and describe observations and experiments which are able to test the unique deterministic evolution and analyze given experimental data from which restrictions of anomalous terms violating this basic principle can be concluded. One important point is, that such anomalous terms are predicted from loop gravity as well as from string theories. Most accurate data can be obtained from future astrophysical observations. Also, laboratory tests like spectroscopy give constraints on the anomalous terms.Comment: 11 pages. to appear in: C. L\"ammerzahl, C.W.F. Everitt, and F.W. Hehl (eds.): Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space, Lecture Notes in Physics 562, Springer 200

    Experimental procedures for precision measurements of the Casimir force with an Atomic Force Microscope

    Full text link
    Experimental methods and procedures required for precision measurements of the Casimir force are presented. In particular, the best practices for obtaining stable cantilevers, calibration of the cantilever, correction of thermal and mechanical drift, measuring the contact separation, sphere radius and the roughness are discussed.Comment: 14 pages, 7 figure

    Peritoneal dialysis prescription in children: bedside principles for optimal practice

    Get PDF
    There is no unique optimal peritoneal dialysis prescription for all children, although the goals of ultrafiltration and blood purification are universal. In turn, a better understanding of the physiology of the peritoneal membrane, as a dynamic dialysis membrane with an exchange surface area recruitment capacity and unique permeability characteristics, results in the transition from an empirical prescription process based on clinical experience alone to the potential for a personalized prescription with individually adapted fill volumes and dwell times. In all cases, the prescribed exchange fill volume should be scaled for body surface area (ml/m2), and volume enhancement should be conducted based on clinical tolerance and intraperitoneal pressure measurements (IPP; cmH2O). The exchange dwell times should be determined individually and adapted to the needs of the patient, with particular attention to phosphate clearance and ultrafiltration capacity. The evolution of residual kidney function and the availability of new, more physiologic, peritoneal dialysis fluids (PDFs) also influence the prescription process. An understanding of all of these principles is integral to the provision of clinically optimal PD

    Rigorous approach to the comparison between experiment and theory in Casimir force measurements

    Get PDF
    In most experiments on the Casimir force the comparison between measurement data and theory was done using the concept of the root-mean-square deviation, a procedure that has been criticized in literature. Here we propose a special statistical analysis which should be performed separately for the experimental data and for the results of the theoretical computations. In so doing, the random, systematic, and total experimental errors are found as functions of separation, taking into account the distribution laws for each error at 95% confidence. Independently, all theoretical errors are combined to obtain the total theoretical error at the same confidence. Finally, the confidence interval for the differences between theoretical and experimental values is obtained as a function of separation. This rigorous approach is applied to two recent experiments on the Casimir effect.Comment: 10 pages, iopart.cls is used, to appear in J. Phys. A (special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005

    Casimir Effect as a Test for Thermal Corrections and Hypothetical Long-Range Interactions

    Full text link
    We have performed a precise experimental determination of the Casimir pressure between two gold-coated parallel plates by means of a micromachined oscillator. In contrast to all previous experiments on the Casimir effect, where a small relative error (varying from 1% to 15%) was achieved only at the shortest separation, our smallest experimental error (0.5\sim 0.5%) is achieved over a wide separation range from 170 nm to 300 nm at 95% confidence. We have formulated a rigorous metrological procedure for the comparison of experiment and theory without resorting to the previously used root-mean-square deviation, which has been criticized in the literature. This enables us to discriminate among different competing theories of the thermal Casimir force, and to resolve a thermodynamic puzzle arising from the application of Lifshitz theory to real metals. Our results lead to a more rigorous approach for obtaining constraints on hypothetical long-range interactions predicted by extra-dimensional physics and other extensions of the Standard Model. In particular, the constraints on non-Newtonian gravity are strengthened by up to a factor of 20 in a wide interaction range at 95% confidence.Comment: 17 pages, 7 figures, Sixth Alexander Friedmann International Seminar on Gravitation and Cosmolog

    The Dipole Coupling of Atoms and Light in Gravitational Fields

    Full text link
    The dipole coupling term between a system of N particles with total charge zero and the electromagnetic field is derived in the presence of a weak gravitational field. It is shown that the form of the coupling remains the same as in flat space-time if it is written with respect to the proper time of the observer and to the measurable field components. Some remarks concerning the connection between the minimal and the dipole coupling are given.Comment: 10 pages, LaTe

    Photon-Neutrino Interactions in Magnetic Field through Neutrino Magnetic Moment

    Get PDF
    We study the neutrino-photon processes like γγννˉ\gamma\gamma\to\nu\bar{\nu} in the presence of uniform external magnetic field for the case when neutrinos can couple to the electromagnetic field directly through their dipole magnetic moment and obtain the stellar energy loss. The process would be of special relevance in astrophysical situations where standard left-handed neutrinos are trapped and the right handed neutrinos produced through the spin flip interaction induced by neutrino magnetic moment alone can freely stream out.Comment: LaTex2e file, 9 page

    Long range neutrino forces in the cosmic relic neutrino background

    Get PDF
    Neutrinos mediate long range forces among macroscopic bodies in vacuum. When the bodies are placed in the neutrino cosmic background, these forces are modified. Indeed, at distances long compared to the scale T1T^{-1}, the relic neutrinos completely screen off the 2-neutrino exchange force, whereas for small distances the interaction remains unaffected.Comment: 8 pages, 2 figure
    corecore