1,873 research outputs found
Is violation of Newton's second law possible?
Astrophysical observations (usually explained by dark matter) suggest that
classical mechanics could break down when the acceleration becomes extremely
small (the approach known as modified Newtonian dynamics, or MOND). I present
the first analysis of MOND manifestations in terrestrial (rather than
astrophysical) settings. A new effect is reported: around each equinox date, 2
spots emerge on the Earth where static bodies experience spontaneous
acceleration due to the possible violation of Newton's second law. Preliminary
estimates indicate that an experimental search for this effect can be feasible.Comment: 10 pages; minor changes to match the published versio
Symmetron Cosmology
The symmetron is a scalar field associated with the dark sector whose
coupling to matter depends on the ambient matter density. The symmetron is
decoupled and screened in regions of high density, thereby satisfying local
constraints from tests of gravity, but couples with gravitational strength in
regions of low density, such as the cosmos. In this paper we derive the
cosmological expansion history in the presence of a symmetron field, tracking
the evolution through the inflationary, radiation- and matter-dominated epochs,
using a combination of analytical approximations and numerical integration. For
a broad range of initial conditions at the onset of inflation, the scalar field
reaches its symmetry-breaking vacuum by the present epoch, as assumed in the
local analysis of spherically-symmetric solutions and tests of gravity. For the
simplest form of the potential, the energy scale is too small for the symmetron
to act as dark energy, hence we must add a cosmological constant to drive
late-time cosmic acceleration. We briefly discuss a class of generalized,
non-renormalizable potentials that can have a greater impact on the late-time
cosmology, though cosmic acceleration requires a delicate tuning of parameters
in this case.Comment: 42 page
EC55-700 Field Moisture Test for Determining when to Irrigate
Extension Circular 55-700: This is about how to perform a field moisture test for determining when to irrigate
Constraints on Light Pseudoscalars Implied by Tests of the Gravitational Inverse-Square Law
The exchange of light pseudoscalars between fermions leads to a
spin-independent potential in order g^4, where g is the Yukawa
pseudoscalar-fermion coupling constant. This potential gives rise to detectable
violations of both the weak equivalence principle (WEP) and the gravitational
inverse-square law (ISL), even if g is quite small. We show that when
previously derived WEP constraints are combined with those arisingfrom ISL
tests, a direct experimental limit on the Yukawa coupling of light
pseudoscalars to neutrons can be inferred for the first time (g_n^2/4pi < 1.6
\times 10^-7), along with a new (and significantly improved) limit on the
coupling of light pseudoscalars to protons.Comment: 12 pages, Revtex, with 1 Postscript figure (submitted to Physical
Review Letters
Towards the use of the most massive black hole candidates in AGN to test the Kerr paradigm
The super-massive objects in galactic nuclei are thought to be the Kerr black
holes predicted by General Relativity, although a definite proof of their
actual nature is still lacking. The most massive objects in AGN () seem to have a high radiative efficiency () and a
moderate mass accretion rate (). The high
radiative efficiency could suggest they are very rapidly-rotating black holes.
The moderate luminosity could indicate that their accretion disk is
geometrically thin. If so, these objects could be excellent candidates to test
the Kerr black hole hypothesis. An accurate measurement of the radiative
efficiency of an individual AGN may probe the geometry of the space-time around
the black hole candidate with a precision comparable to the one achievable with
future space-based gravitational-wave detectors like LISA. A robust evidence of
the existence of a black hole candidate with and accreting from a
thin disk may be interpreted as an indication of new physics. For the time
being, there are several issues to address before using AGN to test the Kerr
paradigm, but the approach seems to be promising and capable of providing
interesting results before the advent of gravitational wave astronomy.Comment: 12 pages, 6 figures. v2: some typos correcte
Stiffening and unfolding of early deposited-fibronectin increase proangiogenic factor secretion by breast cancer-associated stromal cells.
Fibronectin (Fn) forms a fibrillar network that controls cell behavior in both physiological and diseased conditions including cancer. Indeed, breast cancer-associated stromal cells not only increase the quantity of deposited Fn but also modify its conformation. However, (i) the interplay between mechanical and conformational properties of early tumor-associated Fn networks and (ii) its effect on tumor vascularization remain unclear. Here, we first used the Surface Forces Apparatus to reveal that 3T3-L1 preadipocytes exposed to tumor-secreted factors generate a stiffer Fn matrix relative to control cells. We then show that this early matrix stiffening correlates with increased molecular unfolding in Fn fibers, as determined by Förster Resonance Energy Transfer. Finally, we assessed the resulting changes in adhesion and proangiogenic factor (VEGF) secretion of newly seeded 3T3-L1s, and we examined altered integrin specificity as a potential mechanism of modified cell-matrix interactions through integrin blockers. Our data indicate that tumor-conditioned Fn decreases adhesion while enhancing VEGF secretion by preadipocytes, and that an integrin switch is responsible for such changes. Collectively, our findings suggest that simultaneous stiffening and unfolding of initially deposited tumor-conditioned Fn alters both adhesion and proangiogenic behavior of surrounding stromal cells, likely promoting vascularization and growth of the breast tumor. This work enhances our knowledge of cell - Fn matrix interactions that may be exploited for other biomaterials-based applications, including advanced tissue engineering approaches
K-Chameleon and the Coincidence Problem
In this paper we present a hybrid model of k-essence and chameleon, named as
k-chameleon. In this model, due to the chameleon mechanism, the directly strong
coupling between the k-chameleon field and matters (cold dark matters and
baryons) is allowed. In the radiation dominated epoch, the interaction between
the k-chameleon field and background matters can be neglected, the behavior of
the k-chameleon therefore is the same as that of the ordinary k-essence. After
the onset of matter domination, the strong coupling between the k-chameleon and
matters dramatically changes the result of the ordinary k-essence. We find that
during the matter-dominated epoch, only two kinds of attractors may exist: one
is the familiar {\bf K} attractor and the other is a completely {\em new},
dubbed {\bf C} attractor. Once the universe is attracted into the {\bf C}
attractor, the fraction energy densities of the k-chameleon and
dust matter are fixed and comparable, and the universe will undergo
a power-law accelerated expansion. One can adjust the model so that the {\bf K}
attractor do not appear. Thus, the k-chameleon model provides a natural
solution to the cosmological coincidence problem.Comment: Revtex, 17 pages; v2: 18 pages, two figures, more comments and
references added, to appear in PRD, v3: published versio
Hemodialysis in children: general practical guidelines
Over the past 20 years children have benefited from major improvements in both technology and clinical management of dialysis. Morbidity during dialysis sessions has decreased with seizures being exceptional and hypotensive episodes rare. Pain and discomfort have been reduced with the use of chronic internal jugular venous catheters and anesthetic creams for fistula puncture. Non-invasive technologies to assess patient target dry weight and access flow can significantly reduce patient morbidity and health care costs. The development of urea kinetic modeling enables calculation of the dialysis dose delivery, Kt/V, and an indirect assessment of the intake. Nutritional assessment and support are of major importance for the growing child. Even if the validity of these “urea only” data is questioned, their analysis provides information useful for follow-up. Newer machines provide more precise control of ultrafiltration by volumetric assessment and continuous blood volume monitoring during dialysis sessions. Buffered bicarbonate solutions are now standard and more biocompatible synthetic membranes and specific small size material dialyzers and tubing have been developed for young infants. More recently, the concept of “ultrapure” dialysate, i.e. free from microbiological contamination and endotoxins, has developed. This will enable the use of hemodiafiltration, especially with the on-line option, which has many theoretical advantages and should be considered in the case of maximum/optimum dialysis need. Although the optimum dialysis dose requirement for children remains uncertain, reports of longer duration and/or daily dialysis show they are more effective for phosphate control than conventional hemodialysis and should be considered at least for some high-risk patients with cardiovascular impairment. In children hemodialysis has to be individualized and viewed as an “integrated therapy” considering their long-term exposure to chronic renal failure treatment. Dialysis is seen only as a temporary measure for children compared with renal transplantation because this enables the best chance of rehabilitation in terms of educational and psychosocial functioning. In long term chronic dialysis, however, the highest standards should be applied to these children to preserve their future “cardiovascular life” which might include more dialysis time and on-line hemodiafiltration with synthetic high flux membranes if we are able to improve on the rather restricted concept of small-solute urea dialysis clearance
The flight of the bumblebee: vacuum solutions of a gravity model with vector-induced spontaneous Lorentz symmetry breaking
We study the vacuum solutions of a gravity model where Lorentz symmetry is
spontaneously broken once a vector field acquires a vacuum expectation value.
Results are presented for the purely radial Lorentz symmetry breaking (LSB),
radial/temporal LSB and axial/temporal LSB. The purely radial LSB result
corresponds to new black hole solutions. When possible, Parametrized
Post-Newtonian (PPN) parameters are computed and observational boundaries used
to constrain the Lorentz symmetry breaking scale.Comment: 12 pages, 2 figure
- …