6,654 research outputs found
Innovation in organic vegetable growing
Innovation is essential to allow organic vegetable growers to continue to develop in response to a changing market and environment. This paper examines uptake of innovations amongst a group of organic vegetable growers over a period of three years. The study revealed that innovations in a wide range of disciplines were carried out and that both small and large farms were active in pioneering innovations. The drivers behind innovation and the various factors infl uencing uptake and implementation were varied and complex and are discussed here
Understanding and controlling the ingress of driven rain through exposed, solid wall masonry structures
Long term performance of historic buildings can be affected by many environmental factors, some of which become more apparent as the competence of the fabric deteriorates. Many tall historic buildings suffer from water ingress when exposed to driving rain conditions, particularly church towers in the south west of England. It is important to recognise that leakage can occur not only through flaws in the roof of a building but also through significant thicknesses of solid masonry. Identification of the most appropriate intervention requires an understanding of the way in which water might enter the structure and the assessment of potential repair options. While the full work schedule used an integrated assessment involving laboratory, field and archival work to assess the repairs which might be undertaken on these solid wall structures, this paper focuses on the laboratory work done to inform the writing of a Technical Advice Note on the effects of wind driven rain and moisture movement in historic structures (English Heritage, 2012). The laboratory work showed that grouting and rendering was effective at reducing water penetration without retarding drying rates, but that use of internal plastering also had a very beneficial effect
Phase-space structure of two-dimensional excitable localized structures
In this work we characterize in detail the bifurcation leading to an
excitable regime mediated by localized structures in a dissipative nonlinear
Kerr cavity with a homogeneous pump. Here we show how the route can be
understood through a planar dynamical system in which a limit cycle becomes the
homoclinic orbit of a saddle point (saddle-loop bifurcation). The whole picture
is unveiled, and the mechanism by which this reduction occurs from the full
infinite-dimensional dynamical system is studied. Finally, it is shown that the
bifurcation leads to an excitability regime, under the application of suitable
perturbations. Excitability is an emergent property for this system, as it
emerges from the spatial dependence since the system does not exhibit any
excitable behavior locally.Comment: 10 pages, 9 figure
Stability of multi-hump optical solitons
We demonstrate that, in contrast with what was previously believed,
multi-hump solitary waves can be stable. By means of linear stability analysis
and numerical simulations, we investigate the stability of two- and three-hump
solitary waves governed by incoherent beam interaction in a saturable medium,
providing a theoretical background for the experimental results reported by M.
Mitchell, M. Segev, and D. Christodoulides [Phys. Rev. Lett. v. 80, p. 4657
(1998)].Comment: 4 pages, 5 figures, to appear in PR
Drifting instabilities of cavity solitons in vertical cavity surface-emitting lasers with frequency selective feedback
In this paper we study the formation and dynamics of self-propelled cavity
solitons (CSs) in a model for vertical cavity surface-emitting lasers (VCSELs)
subjected to external frequency selective feedback (FSF), and build their
bifurcation diagram for the case where carrier dynamics is eliminated. For low
pump currents, we find that they emerge from the modulational instability point
of the trivial solution, where traveling waves with a critical wavenumber are
formed. For large currents, the branch of self-propelled solitons merges with
the branch of resting solitons via a pitchfork bifurcation. We also show that a
feedback phase variation of 2\pi can transform a CS (whether resting or moving)
into a different one associated to an adjacent longitudinal external cavity
mode. Finally, we investigate the influence of the carrier dynamics, relevant
for VCSELs. We find and analyze qualitative changes in the stability properties
of resting CSs when increasing the carrier relaxation time. In addition to a
drifting instability of resting CSs, a new kind of instability appears for
certain ranges of carrier lifetime, leading to a swinging motion of the CS
center position. Furthermore, for carrier relaxation times typical of VCSELs
the system can display multistability of CSs.Comment: 11 pages, 12 figure
Two-dimensional solitary pulses in driven diffractive-diffusive complex Ginzburg-Landau equations
Two models of driven optical cavities, based on two-dimensional
Ginzburg-Landau equations, are introduced. The models include loss, the Kerr
nonlinearity, diffraction in one transverse direction, and a combination of
diffusion and dispersion in the other one (which is, actually, a temporal
direction). Each model is driven either parametrically or directly by an
external field. By means of direct simulations, stable completely localized
pulses are found (in the directly driven model, they are built on top of a
nonzero flat background). These solitary pulses correspond to spatio-temporal
solitons in the optical cavities. Basic results are presented in a compact form
as stability regions for the solitons in a full three-dimensional parameter
space of either model. The stability region is bounded by two surfaces; beyond
the left one, any two-dimensional (2D) pulse decays to zero, while quasi-1D
pulses, representing spatial solitons in the optical cavity, are found beyond
the right boundary. The spatial solitons are found to be stable both inside the
stability region of the 2D pulses (hence, bistability takes place in this
region) and beyond the right boundary of this region (although they are not
stable everywhere). Unlike the spatial solitons, their quasi-1D counterparts in
the form of purely temporal solitons are always subject to modulational
instability, which splits them into an array of 2D pulses, that further
coalesce into two final pulses. A uniform nonzero state in the parametrically
driven model is also modulationally unstable, which leads to formation of many
2D pulses that subsequently merge into few ones.Comment: a latex text file and 11 eps files with figures. Physica D, in pres
Frequency selection by soliton excitation in nondegenerate intracavity downconversion
We show that soliton excitation in intracavity downconversion naturally
selects a strictly defined frequency difference between the signal and idler
fields. In particular, this phenomenon implies that if the signal has smaller
losses than the idler then its frequency is pulled away from the cavity
resonance and the idler frequency is pulled towards the resonance and {\em vice
versa}. The frequency selection is shown to be closely linked with the relative
energy balance between the idler and signal fields.Comment: 5 pages, 3 figures. To appear in Phys Rev Let
Steps towards a map of the nearby universe
We present a new analysis of the Sloan Digital Sky Survey data aimed at
producing a detailed map of the nearby (z < 0.5) universe. Using neural
networks trained on the available spectroscopic base of knowledge we derived
distance estimates for about 30 million galaxies distributed over ca. 8,000 sq.
deg. We also used unsupervised clustering tools developed in the framework of
the VO-Tech project, to investigate the possibility to understand the nature of
each object present in the field and, in particular, to produce a list of
candidate AGNs and QSOs.Comment: 3 pages, 1 figure. To appear in Nucl Phys. B, in the proceedings of
the NOW-2006 (Neutrino Oscillation Workshop - 2006), R. Fogli et al. ed
- …
