548 research outputs found

    Unveiling the nature of out-of-equilibrium phase transitions in a system with long-range interactions

    Full text link
    Recently, there has been some vigorous interest in the out-of-equilibrium quasistationary states (QSSs), with lifetimes diverging with the number N of degrees of freedom, emerging from numerical simulations of the ferromagnetic XY Hamiltonian Mean Field (HMF) starting from some special initial conditions. Phase transitions have been reported between low-energy magnetized QSSs and large-energy unexpected, antiferromagnetic-like, QSSs with low magnetization. This issue is addressed here in the Vlasov N \rightarrow \infty limit. It is argued that the time-asymptotic states emerging in the Vlasov limit can be related to simple generic time-asymptotic forms for the force field. The proposed picture unveils the nature of the out-of-equilibrium phase transitions reported for the ferromagnetic HMF: this is a bifurcation point connecting an effective integrable Vlasov one-particle time-asymptotic dynamics to a partly ergodic one which means a brutal open-up of the Vlasov one-particle phase space. Illustration is given by investigating the time-asymptotic value of the magnetization at the phase transition, under the assumption of a sufficiently rapid time-asymptotic decay of the transient force field

    Linear theory and violent relaxation in long-range systems: a test case

    Full text link
    In this article, several aspects of the dynamics of a toy model for longrange Hamiltonian systems are tackled focusing on linearly unstable unmagnetized (i.e. force-free) cold equilibria states of the Hamiltonian Mean Field (HMF). For special cases, exact finite-N linear growth rates have been exhibited, including, in some spatially inhomogeneous case, finite-N corrections. A random matrix approach is then proposed to estimate the finite-N growth rate for some random initial states. Within the continuous, NN \rightarrow \infty, approach, the growth rates are finally derived without restricting to spatially homogeneous cases. All the numerical simulations show a very good agreement with the different theoretical predictions. Then, these linear results are used to discuss the large-time nonlinear evolution. A simple criterion is proposed to measure the ability of the system to undergo a violent relaxation that transports it in the vicinity of the equilibrium state within some linear e-folding times

    870 micron continuum observations of the bubble-shaped nebula Gum 31

    Full text link
    We are presenting here a study of the cold dust in the infrared ring nebula Gum 31. We aim at deriving the physical properties of the molecular gas and dust associated with the nebula, and investigating its correlation with the star formation in the region, that was probably triggered by the expansion of the ionization front. We use 870 micron data obtained with LABOCA to map the dust emission. The obtained LABOCA image was compared to archival IR,radio continuum, and optical images. The 870 micron emission follows the 8 micron (Spitzer), 250 micron, and 500 micron (Herschel) emission distributions showing the classical morphology of a spherical shell. We use the 870 micron and 250 micron images to identify 60 dust clumps in the collected layers of molecular gas using the Gaussclumps algorithm. The clumps have effective deconvolved radii between 0.16 pc and 1.35 pc, masses between 70 Mo and 2800 Mo, and volume densities between 1.1x10^3 cm^-3 and 2.04x10^5 cm^-3. The total mass of the clumps is 37600 Mo. The dust temperature of the clumps is in the range from 21 K to 32 K, while inside the HII region reaches ~ 40 K. The clump mass distribution is well-fitted by a power law dN/dlog(M/Mo) proportional to M^(-alpha), with alpha=0.93+/-0.28. The slope differs from those obtained for the stellar IMF in the solar neighborhood, suggesting that the clumps are not direct progenitors of single stars/protostars. The mass-radius relationship for the 41 clumps detected in the 870 microns emission shows that only 37% of them lie in or above the high-mass star formation threshold, most of them having candidate YSOs projected inside. A comparison of the dynamical age of the HII region with the fragmentation time, allowed us to conclude that the collect and collapse mechanism may be important for the star formation at the edge of Gum 31, although other processes may also be acting.Comment: 15 pages, 10 figures. Accepted for publication in A&

    Molecular gas and star formation towards the IR dust bubble S24 and its environs

    Full text link
    We present a multi-wavelength analysis of the infrared dust bubble S24, and its environs, with the aim of investigating the characteristics of the molecular gas and the interstellar dust linked to them, and analyzing the evolutionary status of the young stellar objects (YSOs) identified there. Using APEX data, we mapped the molecular emission in the CO(2-1), 13^{13}CO(2-1), C18^{18}O(2-1), and 13^{13}CO(3-2) lines in a region of about 5'x 5' in size around the bubble. The cold dust distribution was analyzed using ATLASGAL and Herschel images. Complementary IR and radio data were also used.The molecular gas linked to the S24 bubble, G341.220-0.213, and G341.217-0.237 has velocities between -48.0 km sec1^{-1} and -40.0 km sec1^{-1}. The gas distribution reveals a shell-like molecular structure of \sim0.8 pc in radius bordering the bubble. A cold dust counterpart of the shell is detected in the LABOCA and Herschel images.The presence of extended emission at 24 μ\mum and radio continuum emission inside the bubble indicates that the bubble is a compact HII region. Part of the molecular gas bordering S24 coincides with the extended infrared dust cloud SDC341.194-0.221. A cold molecular clump is present at the interface between S24 and G341.217-0.237. As regards G341.220-0.213, the presence of an arc-like molecular structure at the northern and eastern sections of this IR source indicates that G341.220-0.213 is interacting with the molecular gas. Several YSO candidates are found to be linked to the IR extended sources, thus confirming their nature as active star-forming regions. The total gas mass in the region and the H2_2 ambient density amount to 10300 M_{\odot} and 5900 cm3^{-3}, indicating that G341.220-0.213, G341.217-0.237, and the S24 HII region are evolving in a high density medium. A triggering star formation scenario is also investigated.Comment: 17 pages, 16 figures. Submitted to A&A. Revised according to the referee repor

    Inhomogeneous Quasi-stationary States in a Mean-field Model with Repulsive Cosine Interactions

    Full text link
    The system of N particles moving on a circle and interacting via a global repulsive cosine interaction is well known to display spatially inhomogeneous structures of extraordinary stability starting from certain low energy initial conditions. The object of this paper is to show in a detailed manner how these structures arise and to explain their stability. By a convenient canonical transformation we rewrite the Hamiltonian in such a way that fast and slow variables are singled out and the canonical coordinates of a collective mode are naturally introduced. If, initially, enough energy is put in this mode, its decay can be extremely slow. However, both analytical arguments and numerical simulations suggest that these structures eventually decay to the spatially uniform equilibrium state, although this can happen on impressively long time scales. Finally, we heuristically introduce a one-particle time dependent Hamiltonian that well reproduces most of the observed phenomenology.Comment: to be published in J. Phys.

    Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model

    Get PDF
    The influence of the finite number N of particles coupled to a monochromatic wave in a collisionless plasma is investigated. For growth as well as damping of the wave, discrete particle numerical simulations show an N-dependent long time behavior resulting from the dynamics of individual particles. This behavior differs from the one due to the numerical errors incurred by Vlasov approaches. Trapping oscillations are crucial to long time dynamics, as the wave oscillations are controlled by the particle distribution inhomogeneities and the pulsating separatrix crossings drive the relaxation towards thermal equilibrium.Comment: 11 pages incl. 13 figs. Phys. Rev. E, in pres

    Topological origin of the phase transition in a mean-field model

    Full text link
    We argue that the phase transition in the mean-field XY model is related to a particular change in the topology of its configuration space. The nature of this topological transition can be discussed on the basis of elementary Morse theory using the potential energy per particle V as a Morse function. The value of V where such a topological transition occurs equals the thermodynamic value of V at the phase transition and the number of (Morse) critical points grows very fast with the number of particles N. Furthermore, as in statistical mechanics, also in topology the way the thermodynamic limit is taken is crucial.Comment: REVTeX, 5 pages, with 1 eps figure included. Some changes in the text. To appear in Physical Review Letter

    The use of nematodes in assessing ecological conditions in shallow waters surrounding a Mediterranean harbour facility

    Get PDF
    The spatial distribution and structure of nematode assemblages in the area surrounding the harbour of Vado Ligure (Savona, NW Mediterranean) were studied in relation to the influence of natural and anthropogenic environmental factors. Stations were selected following an “anthropogenic gradient” from sites located near the city centre and its harbour to more pristine and distant sites. Sediment quality was determined by considering both sediment granulometric and chemical parameters (hydrocarbons, heavy metals, total organic matter, proteins, carbohydrates) as well as nematode abundance, diversity, life strategies, trophic structure and assemblage composition. A high correlation between environmental characteristics and the nematode response was found. On the basis of the comparison of these results, which identified three distinct sub-areas associated with different levels of environmental quality, a set of nematode indicator genera was selected for the future evaluation of quality status

    A submillimeter study of the IR dust bubble S 21 and its environs

    Get PDF
    Based on the molecular emission in the 12CO(2-1) and 13CO(2-1) lines, and on the continuum emission in the MIR and FIR towards the S 21 IR dust bubble, we analyze the physical characteristics of the gas and dust linked to the nebula and the presence of young stellar objects (YSOs) in its environs. The line emission reveals a clumpy molecular shell, 1.4 pc in radius, encircling S 21. The total molecular mass in the shell amounts to 2900 M⊙ and the original ambient density, 2.1 ×10 3 cm − 3 , indicating that the bubble is evolving in a high density interstellar medium. The image at 24 µm shows warm dust inside the bubble, while the emission in the range 250 to 870 µm reveals cold dust in its outskirts, coincident with the molecular gas. The detection of radio continuum emission indicates that the bubble is a compact Hii region. A search for YSOs using photometric criteria allowed to identify many candidates projected onto the molecular clumps. We analize if the collect and collapse process has triggered a new generation of stars.Basados en la emisión molecular en las líneas 12CO(2-1) y 13CO(2-1), y en la emisión en el continuo en el mediano y lejano infrarrojo hacia la burbuja S 21, analizamos las características físicas del gas y polvo asociado con S 21 y la presencia de objetos estelares jóvenes (YSOs) en su entorno. La emisión molecular revela una cáscara grumosa de 1.4 pc de radio rodeando a S 21. Su masa molecular es de 2900 M⊙ y la densidad ambiental original en la región, 2.1 ×10 3 cm − 3 , lo que indica que la burbuja evoluciona en un medio de alta densidad. La imagen a 24 µ m muestra polvo tibio dentro de la burbuja, mientras que la emisión en el rango 250 a 870 µm revela que hay polvo frío en la vecindad, coincidente con el gas molecular. La detección de emisión en el continuo de radio indica que S 21 es una región Hii compacta. Una búsqueda de YSOs utilizando criterios fotométricos permitió identificar muchos candidatos coincidentes con los grumos moleculares. Se analiza si el proceso de collect and collapse ha dado origen a una nueva generación de estrellas.Fil: Cappa, Cristina Elisabeth. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Duronea, Nicolas Urbano. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Vasquez, Javier. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Rubio, M.. Universidad de Chile. Facultad de Ciencias Fisicas y Matematicas; ChileFil: Firpo, V.. Universidad de la Serena; ChileFil: López Caraballo, C. H.. Universidad Católica de Chile; ChileFil: Borissova, J.. Universidad de Valparaiso; Chil
    corecore