121 research outputs found

    Uniform design for the optimization of Al2O3 nanofilms produced by electrophoretic deposition

    Get PDF
    Surface modification by means of nanostructures is of interest to enhance boiling heat transfer in various applications including the organic Rankine cycle (ORC). With the goal of obtaining rough and dense aluminum oxide (Al2O3) nanofilms, the optimal combination of process parameters for electrophoretic deposition (EPD) based on the uniform design (UD) method is explored in this paper. The detailed procedures for the EPD process and UD method are presented. Four main influencing conditions controlling the EPD process were identified as nanofluid concentration, deposition time, applied voltage and suspension pH. A series of tests were carried out based on the UD experimental design. A regression model and statistical analysis were applied to the results. Sensitivity analyses of the effect of the four main parameters on the roughness and deposited mass of Al2O3 films were also carried out. The results showed that Al2O3 nanofilms were deposited compactly and uniformly on the substrate. Within the range of the experiments, the preferred combination of process parameters was determined to be nanofluid concentration of 2 wt.%, deposition time of 15 min, applied voltage of 23 V and suspension pH of 3, yielding roughness and deposited mass of 520.9 nm and 161.6 × 10− 4 g/cm2, respectively. A verification experiment was carried out at these conditions and gave values of roughness and deposited mass within 8% error of the expected ones as determined from the UD approach. It is concluded that uniform design is useful for the optimization of electrophoretic deposition requiring only 7 tests compared to 49 using the orthogonal design method

    Magnesium and Aluminium alloys Dissimilar Joining by Friction Stir Welding

    Get PDF
    Abstract Multi-material lightweight structures are gaining a great deal of attention in several industries, in particular where a trade-off between reduced weight, improved performances, and cost compression is required. Magnesium alloys, such as the zinc-rare earth elements ZE41A alloy, fulfill the first two requirements; however, they are susceptible to corrosion and relatively expensive. Lightweight structures hybridization, for instance combining Magnesium alloys and Aluminium alloys, is currently under consideration as a potential solution to this problem. Nevertheless, dissimilar joining of Magnesium and Aluminium alloys is challenging due to the significant differences in physical properties, as well as to the precipitation of brittle intermetallic compounds, such as Al 12 Mg 17 and Al 3 Mg 2 . In this study, the dissimilar joining of Magnesium and Aluminium alloys by friction stir welding process is discussed. In particular, 4 mm thick plates of ZE41A Mg alloy and AA2024-T3 Al alloy were welded in the butt joint configuration. The feasibility of the process was assessed by means of microstructure and mechanical analysis. The formation of brittle intermetallic compounds was investigated as well
    corecore