9 research outputs found

    Characterization of shifts of koala (Phascolarctos cinereus) intestinal microbial communities associated with antibiotic treatment.

    Get PDF
    Koalas (Phascolarctos cinereus) are arboreal marsupials native to Australia that eat a specialized diet of almost exclusively eucalyptus leaves. Microbes in koala intestines are known to break down otherwise toxic compounds, such as tannins, in eucalyptus leaves. Infections by Chlamydia, obligate intracellular bacterial pathogens, are highly prevalent in koala populations. If animals with Chlamydia infections are received by wildlife hospitals, a range of antibiotics can be used to treat them. However, previous studies suggested that koalas can suffer adverse side effects during antibiotic treatment. This study aimed to use 16S rRNA gene sequences derived from koala feces to characterize the intestinal microbiome of koalas throughout antibiotic treatment and identify specific taxa associated with koala health after treatment. Although differences in the alpha diversity were observed in the intestinal flora between treated and untreated koalas and between koalas treated with different antibiotics, these differences were not statistically significant. The alpha diversity of microbial communities from koalas that lived through antibiotic treatment versus those who did not was significantly greater, however. Beta diversity analysis largely confirmed the latter observation, revealing that the overall communities were different between koalas on antibiotics that died versus those that survived or never received antibiotics. Using both machine learning and OTU (operational taxonomic unit) co-occurrence network analyses, we found that OTUs that are very closely related to Lonepinella koalarum, a known tannin degrader found by culture-based methods to be present in koala intestines, was correlated with a koala's health status. This is the first study to characterize the time course of effects of antibiotics on koala intestinal microbiomes. Our results suggest it may be useful to pursue alternative treatments for Chlamydia infections without the use of antibiotics or the development of Chlamydia-specific antimicrobial compounds that do not broadly affect microbial communities

    A horizon scan of priorities for coastal marine microbiome research

    Get PDF
    Research into the microbiomes of natural environments is changing the way ecologists and evolutionary biologists view the importance of microbes in ecosystem function. This is particularly relevant in ocean environments, where microbes constitute the majority of biomass and control most of the major biogeochemical cycles, including those that regulate the Earth's climate. Coastal marine environments provide goods and services that are imperative to human survival and well-being (e.g. fisheries, water purification), and emerging evidence indicates that these ecosystem services often depend on complex relationships between communities of microorganisms (the ‘microbiome’) and their hosts or environment – termed the ‘holobiont’. Understanding of coastal ecosystem function must therefore be framed under the holobiont concept, whereby macroorganisms and their associated microbiomes are considered as a synergistic ecological unit. Here we evaluated the current state of knowledge on coastal marine microbiome research and identified key questions within this growing research area. Although the list of questions is broad and ambitious, progress in the field is increasing exponentially, and the emergence of large, international collaborative networks and well-executed manipulative experiments are rapidly advancing the field of coastal marine microbiome research

    A horizon scan of priorities for coastal marine microbiome research

    Get PDF
    Research into the microbiomes of natural environments is changing the way ecologists and evolutionary biologists view the importance of microbes in ecosystem function. This is particularly relevant in ocean environments, where microbes constitute the majority of biomass and control most of the major biogeochemical cycles, including those that regulate the Earth's climate. Coastal marine environments provide goods and services that are imperative to human survival and well-being (e.g. fisheries, water purification), and emerging evidence indicates that these ecosystem services often depend on complex relationships between communities of microorganisms (the ‘microbiome’) and their hosts or environment – termed the ‘holobiont’. Understanding of coastal ecosystem function must therefore be framed under the holobiont concept, whereby macroorganisms and their associated microbiomes are considered as a synergistic ecological unit. Here we evaluated the current state of knowledge on coastal marine microbiome research and identified key questions within this growing research area. Although the list of questions is broad and ambitious, progress in the field is increasing exponentially, and the emergence of large, international collaborative networks and well-executed manipulative experiments are rapidly advancing the field of coastal marine microbiome research

    Characterization of shifts of koala (Phascolarctos cinereus) intestinal microbial communities associated with antibiotic treatment

    No full text
    Koalas (Phascolarctos cinereus) are arboreal marsupials native to Australia that eat a specialized diet of almost exclusively eucalyptus leaves. Microbes in koala intestines are known to break down otherwise toxic compounds, such as tannins, in eucalyptus leaves. Infections by Chlamydia, obligate intracellular bacterial pathogens, are highly prevalent in koala populations. If animals with Chlamydia infections are received by wildlife hospitals, a range of antibiotics can be used to treat them. However, previous studies suggested that koalas can suffer adverse side effects during antibiotic treatment. This study aimed to use 16S rRNA gene sequences derived from koala feces to characterize the intestinal microbiome of koalas throughout antibiotic treatment and identify specific taxa associated with koala health after treatment. Although differences in the alpha diversity were observed in the intestinal flora between treated and untreated koalas and between koalas treated with different antibiotics, these differences were not statistically significant. The alpha diversity of microbial communities from koalas that lived through antibiotic treatment versus those who did not was significantly greater, however. Beta diversity analysis largely confirmed the latter observation, revealing that the overall communities were different between koalas on antibiotics that died versus those that survived or never received antibiotics. Using both machine learning and OTU (operational taxonomic unit) co-occurrence network analyses, we found that OTUs that are very closely related to Lonepinella koalarum, a known tannin degrader found by culture-based methods to be present in koala intestines, was correlated with a koala’s health status. This is the first study to characterize the time course of effects of antibiotics on koala intestinal microbiomes. Our results suggest it may be useful to pursue alternative treatments for Chlamydia infections without the use of antibiotics or the development of Chlamydia-specific antimicrobial compounds that do not broadly affect microbial communities

    Community-Level Differences in the Microbiome of Healthy Wild Mallards and Those Infected by Influenza A Viruses.

    No full text
    Waterfowl, especially ducks and geese, are primary reservoirs for influenza A viruses (IAVs) that evolve and emerge as important pathogens in domestic animals and humans. In contrast to humans, where IAVs infect the respiratory tract and cause significant morbidity and mortality, IAVs infect the gastrointestinal tract of waterfowl and cause little or no pathology and are spread by fecal-oral transmission. For this reason, we examined whether IAV infection is associated with differences in the cloacal microbiome of mallards (Anas platyrhyncos), an important host of IAVs in North America and Eurasia. We characterized bacterial community composition by sequencing the V4 region of 16S rRNA genes. IAV-positive mallards had lower species diversity, richness, and evenness than IAV-negative mallards. Operational taxonomic unit (OTU) cooccurrence patterns were also distinct depending on infection status. Network analysis showed that IAV-positive mallards had fewer significant cooccurring OTUs and exhibited fewer coassociation patterns among those OTUs than IAV-negative mallards. These results suggest that healthy mallards have a more robust and complex cloacal microbiome. By combining analytical approaches, we identified 41 bacterial OTUs, primarily representatives of Streptococcus spp., Veillonella dispar, and Rothia mucilaginosa, contributing to the observed differences. This study found that IAV-infected wild mallards exhibited strong differences in microbiome composition relative to noninfected mallards and identified a concise set of putative biomarker OTUs. Using Random Forest, a supervised machine learning method, we verified that these 41 bacterial OTUs are highly predictive of infection status. IMPORTANCE Seasonal influenza causes 3 to 5 million severe illnesses and 250,000 to 500,000 human deaths each year. While pandemic influenza viruses emerge only periodically, they can be devastating-for example, the 1918 H1N1 pandemic virus killed more than 20 million people. IAVs infect the respiratory tract and cause significant morbidity and mortality in humans. In contrast, IAVs infect the gastrointestinal tract of waterfowl, producing little pathology. Recent studies indicated that viruses can alter the microbiome at the respiratory and gastrointestinal mucosa, but there are no reports of how the microbiota of the natural host of influenza is affected by infection. Here we find that the mallard microbiome is altered during IAV infection. Our results suggest that detailed examination of humans and animals infected with IAVs may reveal individualized microbiome profiles that correspond to health and disease. Moreover, future studies should explore whether the altered microbiome facilitates maintenance and transmission of IAVs in waterfowl populations

    Copper is an endogenous modulator of neural circuit spontaneous activity.

    No full text
    For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling
    corecore