1,213 research outputs found

    Marine Biotoxins: Emergence of Harmful Algal Blooms as Health Threats to Marine Wildlife

    Get PDF
    Harmful algal blooms (HABs) affect aquatic ecosystems around the world, adversely affecting marine animal and human health, coastal ecosystem integrity, and economies that depend on coastal resources. Shellfish poisoning events involving humans who had ingested bivalves contaminated with HAB toxins primarily drove early scientific and social interest in HABs. More recently, research efforts have shown that HABs are often temporally and spatially correlated with the occurrence of acute morbidity or mortality of marine animals (Landsberg et al. 2005), and to date at least four classes of algal toxins have been associated with such events. Although fish, seabirds, and many other groups of marine wildlife are affected, these mortality events frequently involve marine mammals, and as such this chapter will focus primarily on the latter. In addition, since marine mammals are important sentinel species that act as barometers of ocean health and demonstrate the link between ocean and human health, the importance placed on these species in this context is warranted (Aguirre and Tabor 2004; Tabor and Aguirre 2004; Wells et al. 2004; Bossart 2006)

    Marine Biotoxins: Emergence of Harmful Algal Blooms as Health Threats to Marine Wildlife

    Get PDF
    Harmful algal blooms (HABs) affect aquatic ecosystems around the world, adversely affecting marine animal and human health, coastal ecosystem integrity, and economies that depend on coastal resources. Shellfish poisoning events involving humans who had ingested bivalves contaminated with HAB toxins primarily drove early scientific and social interest in HABs. More recently, research efforts have shown that HABs are often temporally and spatially correlated with the occurrence of acute morbidity or mortality of marine animals (Landsberg et al. 2005), and to date at least four classes of algal toxins have been associated with such events. Although fish, seabirds, and many other groups of marine wildlife are affected, these mortality events frequently involve marine mammals, and as such this chapter will focus primarily on the latter. In addition, since marine mammals are important sentinel species that act as barometers of ocean health and demonstrate the link between ocean and human health, the importance placed on these species in this context is warranted (Aguirre and Tabor 2004; Tabor and Aguirre 2004; Wells et al. 2004; Bossart 2006)

    An in vitro-identified high-affinity nucleosome-positioning signal is capable of transiently positioning a nucleosome in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The physiological function of eukaryotic DNA occurs in the context of nucleosomal arrays that can expose or obscure defined segments of the genome. Certain DNA sequences are capable of strongly positioning a nucleosome <it>in vitro</it>, suggesting the possibility that favorable intrinsic signals might reproducibly structure chromatin segments. As high-throughput sequencing analyses of nucleosome coverage <it>in vitro </it>and <it>in vivo </it>have become possible, a vigorous debate has arisen over the degree to which intrinsic DNA:nucleosome affinities orchestrate the <it>in vivo </it>positions of nucleosomes, thereby controlling physical accessibility of specific sequences in DNA.</p> <p>Results</p> <p>We describe here the <it>in vivo </it>consequences of placing a synthetic high-affinity nucleosome-positioning signal, the 601 sequence, into a DNA plasmid vector in mice. Strikingly, the 601 sequence was sufficient to position nucleosomes during an early phase after introduction of the DNA into the mice (when the plasmid vector transgene was active). This positioning capability was transient, with a loss of strong positioning at a later time point when the transgenes had become silent.</p> <p>Conclusions</p> <p>These results demonstrate an ability of DNA sequences selected solely for nucleosome affinity to organize chromatin <it>in vivo</it>, and the ability of other mechanisms to overcome these interactions in a dynamic nuclear environment.</p

    Straightening Caenorhabditis elegans images

    Get PDF
    Motivation: Caenorhabditis elegans, a roundworm found in soil, is a widely studied model organism with about 1000 cells in the adult. Producing high-resolution fluorescence images of C.elegans to reveal biological insights is becoming routine, motivating the development of advanced computational tools for analyzing the resulting image stacks. For example, worm bodies usually curve significantly in images. Thus one must ‘straighten’ the worms if they are to be compared under a canonical coordinate system

    Fate specification and tissue-specific cell cycle control of the <i>Caenorhabditis elegans</i> intestine

    Get PDF
    Coordination between cell fate specification and cell cycle control in multicellular organisms is essential to regulate cell numbers in tissues and organs during development, and its failure may lead to oncogenesis. In mammalian cells, as part of a general cell cycle checkpoint mechanism, the F-box protein β-transducin repeat-containing protein (β-TrCP) and the Skp1/Cul1/F-box complex control the periodic cell cycle fluctuations in abundance of the CDC25A and B phosphatases. Here, we find that the Caenorhabditis elegans β-TrCP orthologue LIN-23 regulates a progressive decline of CDC-25.1 abundance over several embryonic cell cycles and specifies cell number of one tissue, the embryonic intestine. The negative regulation of CDC-25.1 abundance by LIN-23 may be developmentally controlled because CDC-25.1 accumulates over time within the developing germline, where LIN-23 is also present. Concurrent with the destabilization of CDC-25.1, LIN-23 displays a spatially dynamic behavior in the embryo, periodically entering a nuclear compartment where CDC-25.1 is abundant

    Predicting invasive fungal disease due to Candida species in non-neutropenic, critically ill, adult patients in United Kingdom critical care units.

    Get PDF
    BACKGROUND: Given the predominance of invasive fungal disease (IFD) amongst the non-immunocompromised adult critically ill population, the potential benefit of antifungal prophylaxis and the lack of generalisable tools to identify high risk patients, the aim of the current study was to describe the epidemiology of IFD in UK critical care units, and to develop and validate a clinical risk prediction tool to identify non-neutropenic, critically ill adult patients at high risk of IFD who would benefit from antifungal prophylaxis. METHODS: Data on risk factors for, and outcomes from, IFD were collected for consecutive admissions to adult, general critical care units in the UK participating in the Fungal Infection Risk Evaluation (FIRE) Study. Three risk prediction models were developed to model the risk of subsequent Candida IFD based on information available at three time points: admission to the critical care unit, at the end of 24 h and at the end of calendar day 3 of the critical care unit stay. The final model at each time point was evaluated in the three external validation samples. RESULTS: Between July 2009 and April 2011, 60,778 admissions from 96 critical care units were recruited. In total, 359 admissions (0.6 %) were admitted with, or developed, Candida IFD (66 % Candida albicans). At the rate of candidaemia of 3.3 per 1000 admissions, blood was the most common Candida IFD infection site. Of the initial 46 potential variables, the final admission model and the 24-h model both contained seven variables while the end of calendar day 3 model contained five variables. The end of calendar day 3 model performed the best with a c index of 0.709 in the full validation sample. CONCLUSIONS: Incidence of Candida IFD in UK critical care units in this study was consistent with reports from other European epidemiological studies, but lower than that suggested by previous hospital-wide surveillance in the UK during the 1990s. Risk modeling using classical statistical methods produced relatively simple risk models, and associated clinical decision rules, that provided acceptable discrimination for identifying patients at 'high risk' of Candida IFD. TRIAL REGISTRATION: The FIRE Study was reviewed and approved by the Bolton NHS Research Ethics Committee (reference: 08/H1009/85), the Scotland A Research Ethics Committee (reference: 09/MRE00/76) and the National Information Governance Board (approval number: PIAG 2-10(f)/2005)

    An assessment of temporal, spatial and taxonomic trends in harmful algal toxin exposure in stranded marine mammals from the US New England coast

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fire, S. E., Bogomolni, A., DiGiovanni, R. A., Jr., Early, G., Leighfield, T. A., Matassa, K., Miller, G. A., Moore, K. M. T., Moore, M., Niemeyer, M., Pugliares, K., Wang, Z., & Wenzel, F. W. An assessment of temporal, spatial and taxonomic trends in harmful algal toxin exposure in stranded marine mammals from the US New England coast. Plos One, 16(1),(2021): e0243570, https://doi.org/10.1371/journal.pone.0243570.Despite a long-documented history of severe harmful algal blooms (HABs) in New England coastal waters, corresponding HAB-associated marine mammal mortality events in this region are far less frequent or severe relative to other regions where HABs are common. This long-term survey of the HAB toxins saxitoxin (STX) and domoic acid (DA) demonstrates significant and widespread exposure of these toxins in New England marine mammals, across multiple geographic, temporal and taxonomic groups. Overall, 19% of the 458 animals tested positive for one or more toxins, with 15% and 7% testing positive for STX and DA, respectively. 74% of the 23 different species analyzed demonstrated evidence of toxin exposure. STX was most prevalent in Maine coastal waters, most frequently detected in common dolphins (Delphinus delphis), and most often detected during July and October. DA was most prevalent in animals sampled in offshore locations and in bycaught animals, and most frequently detected in mysticetes, with humpback whales (Megaptera novaeangliae) testing positive at the highest rates. Feces and urine appeared to be the sample matrices most useful for determining the presence of toxins in an exposed animal, with feces samples having the highest concentrations of STX or DA. No relationship was found between the bloom season of toxin-producing phytoplankton and toxin detection rates, however STX was more likely to be present in July and October. No relationship between marine mammal dietary preference and frequency of toxin detection was observed. These findings are an important part of a framework for assessing future marine mammal morbidity and mortality events, as well as monitoring ecosystem health using marine mammals as sentinel organisms for predicting coastal ocean changes.S.F. - NOAA John H. Prescott Marine Mammal Rescue Assistance Grant Program #NA16NMF4390151 S.F. - NOAA John H. Prescott Marine Mammal Rescue Assistance Grant Program #NA17NMF4390082 S.F. - Florida Tech Department of Biological Sciences S.F. - Florida Tech John H. Evans Library Open Access Subvention Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Strong impact of smoking on multimorbidity and cardiovascular risk among human immunodeficiency virus-infected individuals in comparison with the general population.

    Get PDF
    Background.  Although acquired immune deficiency syndrome-associated morbidity has diminished due to excellent viral control, multimorbidity may be increasing among human immunodeficiency virus (HIV)-infected persons compared with the general population. Methods.  We assessed the prevalence of comorbidities and multimorbidity in participants of the Swiss HIV Cohort Study (SHCS) compared with the population-based CoLaus study and the primary care-based FIRE (Family Medicine ICPC-Research using Electronic Medical Records) records. The incidence of the respective endpoints were assessed among SHCS and CoLaus participants. Poisson regression models were adjusted for age, sex, body mass index, and smoking. Results.  Overall, 74 291 participants contributed data to prevalence analyses (3230 HIV-infected; 71 061 controls). In CoLaus, FIRE, and SHCS, multimorbidity was present among 26%, 13%, and 27% of participants. Compared with nonsmoking individuals from CoLaus, the incidence of cardiovascular disease was elevated among smoking individuals but independent of HIV status (HIV-negative smoking: incidence rate ratio [IRR] = 1.7, 95% confidence interval [CI] = 1.2-2.5; HIV-positive smoking: IRR = 1.7, 95% CI = 1.1-2.6; HIV-positive nonsmoking: IRR = 0.79, 95% CI = 0.44-1.4). Compared with nonsmoking HIV-negative persons, multivariable Poisson regression identified associations of HIV infection with hypertension (nonsmoking: IRR = 1.9, 95% CI = 1.5-2.4; smoking: IRR = 2.0, 95% CI = 1.6-2.4), kidney (nonsmoking: IRR = 2.7, 95% CI = 1.9-3.8; smoking: IRR = 2.6, 95% CI = 1.9-3.6), and liver disease (nonsmoking: IRR = 1.8, 95% CI = 1.4-2.4; smoking: IRR = 1.7, 95% CI = 1.4-2.2). No evidence was found for an association of HIV-infection or smoking with diabetes mellitus. Conclusions.  Multimorbidity is more prevalent and incident in HIV-positive compared with HIV-negative individuals. Smoking, but not HIV status, has a strong impact on cardiovascular risk and multimorbidity
    corecore