109 research outputs found

    Thermal response of jointed rock masses inferred from infrared thermographic surveying (Acuto test-site, Italy)

    Get PDF
    The Mediterranean region is affected by considerable daily and seasonal temperature variations due to intense solar radiation. In mid-seasons, thermal excursions can exceed tens of degrees thus influencing the long-term behaviour of jointed rock masses acting as a preparatory factor for rock slope instabilities. In order to evaluate the thermal response of a densely jointed rock-block, monitoring has been in operation since 2016 by direct and remote sensing techniques in an abandoned quarry in Acuto (central Italy). Monthly InfraRed Thermographic (IRT) surveys were carried out on its exposed faces and along sections of interest across monitored main joints. The results highlight the daily and seasonal cyclical behaviour, constraining amplitudes and rates of heating and cooling phases. The temperature time-series revealed the effect of sun radiation and exposure on thermal response of the rock-block, which mainly depends on the seasonal conditions. The influence of opened joints in the heat propagation is revealed by the differential heating experienced across it, which was verified under 1D and 2D analysis. IRT has proved to be a valid monitoring technique in supporting traditional approaches, for the definition of the surficial temperature distribution on rock masses or stone building materials

    Dynamic Fire Danger Mapping from Satellite Imagery and Meteorological Forecast Data

    Get PDF
    Abstract This study aims at ascertaining if and how remote sensing data can improve fire danger estimation based on meteorological variables. With this goal in mind, a dynamic estimation of fire danger was performed using an approach based on the integration of satellite information within a comprehensive fire danger rating system. The performances obtained with and without using satellite data were carried out for fires that occurred during the fire season in the year 2003 in the Calabria region (southern Italy). This study area was selected, first, because it is highly representative of Mediterranean ecosystems and, second, because it is an interesting test case for wildfire occurrences within the Mediterranean basin. The results obtained have shown that the use of satellite data reduced efficiently the overestimated danger areas, thus improving at least by 10% the fire forecasting rate obtained without using satellite-based maps. Such findings can be directly extended to other similar Mediterranean ecosystems

    A Grid platform for the European Civil Protection e-Infrastructure: the Forest Fires use scenario

    Get PDF
    During the full cycle of the emergency management, Civil Protection operative procedures involve many actors belonging to several institutions playing different roles. In this context the sharing of information is a vital requirement to make correct and effective decisions. Therefore a European-wide technological infrastructure providing a distributed and coordinated access to different kinds of resources (data, information, services, expertise, etc.) could enhance existing Civil Protection applications and even enable new ones. In the recent years Grid technologies have reached a mature state providing a platform for secure and coordinated resource sharing between the participants in the so-called Virtual Organizations. Moreover the Earth and Space Sciences Informatics provide the conceptual tools for modelling the geospatial information shared in Civil Protection applications during its entire life cycle. Therefore a European Civil Protection e-infrastructure could be based on a Grid platform enhanced with Earth Sciences specific services. However Civil Protection applications stress the requirements of Earth Sciences research applications, for example in terms of real-time support. Therefore a set of high-level services specifically tailored for such applications must be built on top of the Grid platform. As a result of a requirement analysis, the FP6 project CYCLOPS has proposed an architectural framework for the future European Civil Protection e-Infrastructure. In this architecture a layer of high-level services tailored to Civil Protection applications is built on top of the EGEE Grid middleware. This architectural approach has been tested implementing a prototype of a grid-enabled RISICO, the application for wild fire risk assessment used by the Italian Civil Protection

    Case history: A 5 km long waterborne geophysical survey along the Po river within the city of Turin (northwest Italy)

    Get PDF
    The geologic investigation of water-covered areas is often difficult and inefficient with only the use of traditional surveying techniques (i.e., local drilling and sampling). Waterborne geophysical surveys can offer a valuable alternative to achieve adequate data coverage in a cost-effective way. Two geophysical waterborne methods were combined in this study for the delineation of the submerged subsurface geology along a 5 km stretch of the Po river, within the urban area of Turin. The adopted methods were: continuous vertical electrical sounding (CVES) and ground-penetrating radar (GPR). Special attention was devoted to the accurate geo-referencing of both surveys for combined interpretation. GPR results provide a high-quality representation of the river bed forms, with identification of clear sand dunes in the finer alluvial sediments. CVES resistivity sections enable a deeper characterization, identifying the interface between the shallow alluvial deposits and the deeper low-resistivity marls of the Turin-Hill succession. Our work strengthens the effectiveness of waterborne surveys for geologic prospecting of watercovered and difficult-to-access areas

    Advanced e-Infrastructures for civil protection applications : the CYCLOPS project

    Get PDF
    During the full cycle of the emergency management, Civil Protection operative procedures involve many actors belonging to several institutions (civil protection agencies, public administrations, research centers, etc.) playing different roles (decision-makers, data and service providers, emergency squads, etc.). In this context the sharing of information is a vital requirement to make correct and effective decisions. Therefore a European-wide technologi- cal infrastructure providing a distributed and coordinated access to different kinds of resources (data, information, services, expertise, etc.) could enhance existing Civil Protection applications and even enable new ones. Such European Civil Protection e-Infrastructure should be designed taking into account the specific requirements of Civil Protection applications and the state-of-the-art in the scientific and technological disciplines which could make the emergency management more effective. In the recent years Grid technologies have reached a mature state providing a platform for secure and coordinated resource sharing between the participants collected in the so-called Virtual Organizations. Moreover the Earth and Space Sciences Informatics provide the conceptual tools for modeling the geospatial information shared in Civil Protection applications during its entire lifecycle. Therefore a European Civil Protection e-infrastructure might be based on a Grid platform enhanced with Earth Sciences services. In the context of the 6th Framework Programme the EU co-funded Project CYCLOPS (CYber-infrastructure for CiviL protection Operative ProcedureS), ended in December 2008, has addressed the problem of defining the re- quirements and identifying the research strategies and innovation guidelines towards an advanced e-Infrastructure for Civil Protection. Starting from the requirement analysis CYCLOPS has proposed an architectural framework for a European Civil Protection e-Infrastructure. This architectural framework has been evaluated through the development of prototypes of two operative applications used by the Italian Civil Protection for Wild Fires Risk Assessment (RISICO) and by the French Civil Protection for Flash Flood Risk Management (SPC-GD). The results of these studies and proof-of-concepts have been used as the basis for the definition of research and innovation strategies aiming to the detailed design and implementation of the infrastructure. In particular the main research themes and topics to be addressed have been identified and detailed. Finally the obstacles to the innovation required for the adoption of this infrastructure and possible strategies to overcome them have been discussed

    Tranfer Learning of Semantic Segmentation Methods for Identifying Buried Archaeological Structures on LiDAR Data

    Full text link
    When applying deep learning to remote sensing data in archaeological research, a notable obstacle is the limited availability of suitable datasets for training models. The application of transfer learning is frequently employed to mitigate this drawback. However, there is still a need to explore its effectiveness when applied across different archaeological datasets. This paper compares the performance of various transfer learning configurations using two semantic segmentation deep neural networks on two LiDAR datasets. The experimental results indicate that transfer learning-based approaches in archaeology can lead to performance improvements, although a systematic enhancement has not yet been observed. We provide specific insights about the validity of such techniques that can serve as a baseline for future works.Comment: Accepted to IEEE International Geoscience and Remote Sensing Symposium 2023 (IGARSS 2023) @IEEE copyrigh
    corecore