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Introduction 

 

The geological imaging and characterization of a riverbed is an essential starting point to determine 

thickness, lateral continuity and hydrogeological properties of the submerged deposits and to investigate the 

interconnecting relationship between surface water and groundwater. However, geological prospecting in 

water-covered areas could be very difficult, expensive and time-consuming with traditional survey 

techniques. Direct investigations (e.g. continuous core boring) are often neither cost effective nor reasonably 

quick and adequate in number to cover the whole water stream and to obtain a reliable correlation of data 

over a wide area. Geophysical methods can therefore be very useful to investigate sediments which are 

entirely located beneath a water-covered area. Among the available geophysical methods the use of non-

seismic methods to study water-covered area is relatively recent (Sambuelli and Butler, 2009). 

Focusing on the electrical techniques used for waterborne surveys, Continuous Vertical Electrical Soundings 

(CVES) using multichannel resistivity meters makes possible to simultaneously perform several resistivity 

measurements, in a fast and cost-effective way. CVES have been applied in water-covered areas for different 

purposes and using different electrode configurations a review of successful case histories can be found in 

Colombero et al. (2014). Even if many of the previous studies agree that the use of submerged electrodes 

allow better penetration in the submerged sediments,  the use of floating electrodes seems sometimes 

preferable, since data acquisition is faster. With the floating cable arrangement, exponentially spaced 

electrodes appear to provide the best resolution with depth (Allen and Merrick, 2007). 

We preliminary discuss the results of a continuous electrical resistivity survey carried out on the Po River, in 

a 5-km long urban sector of its flow across the City of Turin (NW Italy). The main objective of the study was 

to obtain a first assessment on the characterization of the riverbed sediments, in order to define nature, 

composition, geometry and spatial relationships of the detected bodies for further geological and 

hydrogeological reconstruction. 

 

The geological context 

 

In the urban area of the city of Turin, the Po River flows at the western edge of the SW-NE-elongated reliefs 

of the Turin Hill (Fig. 1). The morphology of the relief is remarkably asymmetric, with the presence of a 

relatively steep north-western slope and a much less inclined southern slope. 

 

 
 

Figure 1. Structural geological model of Turin Hill and Po Plain in the area of Turin; the black bold square 

highlights the study area (modified from Forno and Lucchesi, 2015). 



From a structural point of view, Turin Hill consists of a marine succession from the Upper Eocene and the 

Pliocene (Bortolami et al., 1969). This Tertiary sequence lies on a Southalpine metamorphic bedrock 

(Mosca, 2006). The whole sedimentary succession of Turin Hill is variously deformed, forming an 

asymmetrical anticline with a SW–NE-oriented axis. This NW verging structure overthrusts onto the Po 

Plain along the Padan Frontal Thrust currently buried by the Quaternary fluvial sediments of the Po Plain 

(Castellarin, 1994; Festa et al., 2009).  

In particular, for the hillside next to the study area (NW side), the most superficial formation, belonging to 

the Oligocene-Miocene succession, is the Baldissero Unit (Synthem III Langhian). This Unit consists of marl 

and sandstones. Arenaceous-conglomeratic bodies with clasts of ophiolite, gneiss and quartzite are present at 

different levels. Its extension is about several kilometers and thickness varying between 50 and 350 m (eg. 

Colle Maddalena). Along the NW side of the Torino Hill, the Baldissero Unit is sometimes covered by 

deposits belonging to synthems of San Vito (Middle Pleistocene), Cavoretto (Upper Pleistocene) and Monte 

dei Cappuccini (Upper Pleistocene). These synthems are suspended stream terraces stored on N and NW 

slopes of the Torino Hill with thicknesses varying between 1 and 5 m and covered by aeolian deposits (Forno 

et al., 2002; Boano et al., 2004; Forno & Lucchesi, 2005). San Vito Synthem consists of sands, silts and 

weathered gravels and is located between 175 and 300 m  above the current plain. Deposits belonging to 

Cavoretto Synthem consist of silt and sand weakly weathered and are located between 110 and 175 m above 

the plain. Monte dei Cappuccini Synthem consists of sand, silt and weakly weathered gravel and is located 

between 30 and 110 m above the plain. At the foot of the NW side of the Turin Hill, in the right bank of the 

Po River, extensive fluvial deposits  of unknown thickness (Upper Pleistocene - Holocene) is found as a 

cover of Baldissero Unit. These are composed of gravel and fresh or slightly weathered sandy gravel covered 

across the board by a blanket of sand and silty sands of decimetric or metric thickness. Below this 

Quaternary covers, the sediments of Turin Hill are expected to continue at depth, progressively deepening 

towards NW. 

 

The geophysical acquisition 

 

A waterborne continuous electrical profile was acquired on the Po River, from the confluence of the Sangone 

River (south) to the very city centre of Turin (north, Murazzi del Po), for a total length of approximately 

4850 m of acquisitions (Fig. 2).  

The survey line passes throughout four bridges that represented difficult survey points both for the 

acquisition operations and for the strong electrical anomalies due to pier foundations. An array of nine 

electrodes fixed on a floating cable (96 m) dragged by a small boat was used for the survey. The array has 

two current electrodes, in the cable part closest to the boat, followed by eight potential electrodes. The 

current electrodes are 32 m apart, while the seven couples of potential electrodes had exponentially 

increasing spacing, from 0.5 m to 32 m. The first potential electrode was 0.5 m from the farthest current 

electrode. In the continuous profiling set up, dipole-dipole array data are collected measuring voltage 

potential differences between subsequent couples of potential electrodes given the same current injecting 

dipole. The towed cable floated on the river surface thanks to plastic floaters fixed near the electrodes that 

were fully submerged. The cable was kept stretched by a raft fixed at its end. We used a multichannel 

georesistivimeter (Syscal Pro in Sysmar upgrade – Iris Instruments) which was able to simultaneously 

acquire the seven potential measurements. The resistivity meter and the end of the cable were connected to a 

GPS device, in order to accurately record the spatial position of the acquired data. The acquisition step is 

about 2 seconds which results, on average, in one vertical electric sounding every 4 m. To recover the water 

depth, in order to constrain the data inversion, we connected to the IRIS georesistivimeter, and fixed to the 

side of the boat, a 170 kHz Airmar DT800 echo sounder. On average we had a bathymetry measure every 1 

m.  

We track the boat and the cable as in the following. Two different GNSS (Global Navigation Satellite 

Systems) instruments were used during the survey: the first one was a dual frequency multi-constellation 

receiver (Leica 1230+GNSS) that was installed on the main boat, while the second one was a single 

frequency cartographic receiver (Topcon GRS-1) installed on the raft in order to estimate the direction of the 

cable where all electrodes are settled. Both real-time and post-processing approaches were followed. The 

position of the boat was determined in real-time thanks to the Regione Piemonte CORSs (Continuous 

Operating Reference Stations) network, performing an NRTK (Network Real-Time Kinematic) positioning, 

obtaining an accuracy of solutions of  about 2-4 cm. 

 



 
 

Figure 2. Survey line (in red) from the south to the north. Red arrows highlight the location of bridges. 

Purple dots refer to available geological logs and water wells with stratigraphic information.  

 

As far as the raft is concerned, we acquired only the raw data that we post-processed in a single base solution 

(considering a master station 6 km far from the test-site), thanks to a commercial software, reaching a sub-

centimeter accuracy. We considered only positions with fixed phase ambiguities in order to obtain the best 



accuracy available today with GNSS instruments, at the end of the process we obtained 2 highly accurate 

positions every second. 

 

Data processing 

 

Before the inversion a statistical analysis of the data was performed, in order to evaluate the homogeneity of 

water resistivity and data variability with depth. The first three potential dipoles with smallest reciprocal 

spacing mainly investigated the river water, which has a constant resistivity value of 43 Ω m over the whole 

travel path. On the other hand, the following four dipoles are expected to give information about the riverbed 

sediments.  

CVES data were inverted using both a classical 2D tomographic processing and a laterally constrained 

inversion (LCI) approach. The LCI was developed to invert CVES data acquired along a profile by Auken 

and Christiansen (2004). This approach is based on a pseudo-2D layered parameterization of the investigated 

geological medium: the inversion result is a set of 1D consecutive resistivity models, each one corresponding 

to a sounding, composing a pseudo-2D section. All the VES soundings along a profile are inverted 

simultaneously by minimizing a common objective function, which contains all the acquired data, the 

available a-priori information and lateral constraints among consecutive models. Through the lateral 

constraints, information from one vertical electrical sounding are interconnected with the neighbouring ones, 

producing the final pseudo-2D section. The lateral constraints are chosen in a way to allow for pseudo-2D 

sections that are more or less homogeneous on the basis of the geological setting of the investigated area. In 

particular, the degree of lateral homogeneity of the considered model parameters is controlled by the strength 

of the constraints. If the expected lateral variability is small, a strong constraint will be applied; conversely if 

a large variation is expected, the strength of the constraint will be relaxed. 

For a reliable inversion auxiliary a-priori data are also fundamental to ensure that as much known 

information as possible is considered in the inversion process. Crucial information for waterborne surveys 

includes bathymetry and water resistivity, which describe the properties of the water column. By providing 

these constraints, the inversion procedure is focused on the deposits beneath the riverbed, thus allowing a 

more accurate delineation of the sediment's electrical properties. 

The conceptual reference model on which the inversion process was based is a three layered medium. For 

each inversion it was possible to a-priori fix the thickness and the resistivity of the water column (first layer). 

The first layer thickness was a-priori known thanks to echo sounder measurements of the bathymetry 

conducted simultaneously to the electrical survey. The first layer resistivity was kept constant (43 Ω m) 

considering the low variation of the mean of the nearest potential dipoles. No constraints were set for the 

second layer (fluvial deposits) while the electrical resistivity of the third layer (Turin Hill marls) was fixed to 

the value 23 ± 20 Ω m (mean and standard deviation of the whole raw measurements dataset for the seventh 

dipole) in order to force the inversion to find a lateral continuity for the deepest deposits. An appropriate 

Matlab code was developed to implement the inversion, similar to the one described in Colombero et al. 

(2014). 

On the other hand, classical 2D inversion was carried out using Res2DInv software, in continuous resistivity 

profiling mode, fixing both the water resistivity and the bathymetry values (Loke M.H. and Lane J.W., 

2004). 

 

Preliminary results 

 

In Fig.3 the results of the inversion of the whole dataset are shown, both for the LCI approach and for the 

classical 2D tomography. To maintain a readable vertical scale the profile has been split in 1km stretches. 

The depth of the riverbed varies from a minimum of  2 m to a maximum of 10 m. Below the water layer 

(blanked in all the sections) a thick layer of sediments with resistivity higher than water resistivity (43 Ω m) 

is found. The layer thickness is not homogeneous, showing irregular depressions and reliefs, but generally it 

seems to progressively slightly increase towards north. Resistivity values range from the water value up to 

250 Ω m. Quite low values are shown in the first 2400 m of the survey line (43-90 Ω m), from this point to 

the end of the survey the resistivity increases. This first layer of sediments is characterized by the fluvial 

deposits (mainly silt, sand and gravel) of the Po River. The increase in resistivity from south to north can be 

linked to a local increase in granulometric size of the sediments or to the presence of more compacted or 

cemented horizons.  

 



 
 

Figure 3. Inversion results for the whole dataset. From (a) to (e) consecutive 1-km sections. The first line of 

each section is the result of the LCI approach, the second refers to the classical 2D tomography. The water 

layer has been blanked in both sections. Vertical dashed lines highlight the location of bridges. The 

simplified geological information nearest to the river are plotted in direct comparison with the geophysical 

results. 

 

Due to the three-layer model assumption, LCI results show for this horizon a unique mean value of around 

150 Ω m in the last sections, while 2D tomography results distinguish an upper sub-layer with higher 

resistivity and a lower horizon with values comparable with the previous sections.  



The bottom part of each section is instead characterized by sediments with resistivity values (20-40 Ω m) 

lower than water resistivity, that could be likely related to the marls of Turin Hill marine sequence. The 

morphology of this horizon is quite undulating, suggesting strong erosional phenomena both along the main 

flow of the river and at the confluence of the lateral tributary streams. The depth of the marls ranges from a 

few meters in the southern sections to more than 15 m toward north.  

The geophysical results were compared with direct geological information, consisting of logs and water 

wells with stratigraphic information in the surroundings of the river banks. Unfortunately, not all the 

available direct surveys reached the marls, but where the investigation depth was higher, the data were found 

to be in good agreement (Fig. 3c). A strong electrical anomaly was detected near the first bridge of the 

survey, due to the pier foundation structure. These data were rejected for the LCI approach, but remained in 

the 2D tomographic results (Fig. 3a). 

 

Conclusions 

 

This research moved from one main question: how deep is the top of Miocene sediments below the Po River 

in the City of Turin? The answer would have implications in many fields: it would allow for a better 

knowledge of the structural geology of Turin Hill, a better understanding of the relationship between surface 

and groundwater and finally, being the top of Miocene a marly unit (the Baldissero Formation), an 

interesting indication, from a geotechnical point of view, for every engineering work across or below the 

river.  

Many water wells, drilled in the town, even nearby the left bank of the Po River, did not find the top of the 

marls, and the depth of the Miocene could only be guessed by outcrops in the hill and some rare information 

from deeper logs. The asymmetry of the Turin Hill anticline, according to these preliminary results, has been 

validated for the Miocene, from geophysical data, along a 5-km section parallel to the anticline axis.  

According to these preliminary results, the marls below the river are at depth ranging from 3 to 15 m. Only 

in some short stretches of the survey their depth exceeds the 20 m, a reasonable depth of investigation of 

CVES. These marls surely have different hydrogeological and geotechnical properties with respect to the 

Quaternary fluvial sediments. Marls will likely have cohesion and, even if they may have some secondary 

porosity due to tectonic fractures, a different hydraulic conductivity. 

They are the impervious bedrock below the alluvial plane and therefore, in the Turin area, they represent the 

bottom of the shallowest aquifer that drains into the Po River.  

Moreover, according to our preliminary results the depth of the top of the marls could occasionally intersect 

engineering works across or below the Po riverbed.  

The information we obtained, still under process and interpretation, were gathered in a half a day campaign, 

involving roughly eight people and two boats. Even at this stage of work, considering that the full 

implication of our findings is still to be exploited, these results seems of interest and another survey along 

other 5 km of the Po River, to the north of the one presented, is going to be planned. 
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