107 research outputs found

    Multi-Scored Sleep Databases: How to Exploit the Multiple-Labels in Automated Sleep Scoring.

    Get PDF
    STUDY OBJECTIVES Inter-scorer variability in scoring polysomnograms is a well-known problem. Most of the existing automated sleep scoring systems are trained using labels annotated by a single scorer, whose subjective evaluation is transferred to the model. When annotations from two or more scorers are available, the scoring models are usually trained on the scorer consensus. The averaged scorer's subjectivity is transferred into the model, losing information about the internal variability among different scorers. In this study, we aim to insert the multiple-knowledge of the different physicians into the training procedure. The goal is to optimize a model training, exploiting the full information that can be extracted from the consensus of a group of scorers. METHODS We train two lightweight deep learning based models on three different multi-scored databases. We exploit the label smoothing technique together with a soft-consensus (LSSC) distribution to insert the multiple-knowledge in the training procedure of the model. We introduce the averaged cosine similarity metric (ACS) to quantify the similarity between the hypnodensity-graph generated by the models with-LSSC and the hypnodensity-graph generated by the scorer consensus. RESULTS The performance of the models improves on all the databases when we train the models with our LSSC. We found an increase in ACS (up to 6.4%) between the hypnodensity-graph generated by the models trained with-LSSC and the hypnodensity-graph generated by the consensus. CONCLUSION Our approach definitely enables a model to better adapt to the consensus of the group of scorers. Future work will focus on further investigations on different scoring architectures and hopefully large-scale-heterogeneous multi-scored datasets

    The impact of the 'Mis-Peptidome' on HLA Class I-Mediated Diseases: contribution of ERAP1 and ERAP2 and effects on the immune response

    Get PDF
    The strong association with the Major Histocompatibility Complex (MHC) class I genes represents a shared trait for a group of autoimmune/autoinflammatory disorders having in common immunopathogenetic basis as well as clinical features. Accordingly, the main risk factors for Ankylosing Spondylitis (AS), prototype of the Spondyloarthropathies (SpA), the Behçet's disease (BD), the Psoriasis (Ps) and the Birdshot Chorioretinopathy (BSCR) are HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02, respectively. Despite the strength of the association, the HLA pathogenetic role in these diseases is far from being thoroughly understood. Furthermore, Genome-Wide Association Studies (GWAS) have highlighted other important susceptibility factors such as Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and, less frequently, ERAP2 that refine the peptidome presented by HLA class I molecules to CD8+ T cells. Mass spectrometry analysis provided considerable knowledge of HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02 immunopeptidome. However, the combined effect of several ERAP1 and ERAP2 allelic variants could generate an altered pool of peptides accounting for the "mis-immunopeptidome" that ranges from suboptimal to pathogenetic/harmful peptides able to induce non-canonical or autoreactive CD8+ T responses, activation of NK cells and/or garbling the classical functions of the HLA class I molecules. This review will focus on this class of epitopes as possible elicitors of atypical/harmful immune responses which can contribute to the pathogenesis of chronic inflammatory diseases

    Molecular Basis for Non-Covalent, Non-Competitive FAAH Inhibition

    Get PDF
    Fatty acid amide hydrolase (FAAH) plays a key role in the control of cannabinoid signaling and it represents a promising therapeutic strategy for the treatment of a wide range of diseases, including neuropathic pain and chronic inflammation. Starting from kinetics experiments carried out in our previous work for the most potent inhibitor 2-amino-3-chloropyridine amide (TPA14), we have investigated its non-competitive mechanism of action using molecular dynamics, thermodynamic integration and QM-MM/GBSA calculations. The computational studies highlighted the impact of mutations on the receptor binding pockets and elucidated the molecular basis of the non-competitive inhibition mechanism of TPA14, which prevents the endocannabinoid anandamide (AEA) from reaching its pro-active conformation. Our study provides a rationale for the design of non-competitive potent FAAH inhibitors for the treatment of neuropathic pain and chronic inflammation

    Discovery of Bile Acid Derivatives as Potent ACE2 Activators by Virtual Screening and Essential Dynamics

    Get PDF
    The angiotensin-converting enzyme II (ACE2) is a key molecular player in the regulation of vessel contraction, inflammation, and reduction of oxidative stress. In addition, ACE2 has assumed a prominent role in the fight against the COVID-19 pandemic-causing virus SARS-CoV-2, as it is the very first receptor in the host of the viral spike protein. The binding of the spike protein to ACE2 triggers a cascade of events that eventually leads the virus to enter the host cell and initiate its life cycle. At the same time, SARS-CoV-2 infection downregulates ACE2 expression especially in the lung, altering the biochemical signals regulated by the enzyme and contributing to the poor clinical prognosis characterizing the late stage of the COVID-19 disease. Despite its important biological role, a very limited number of ACE2 activators are known. Here, using a combined in silico and experimental approach, we show that ursodeoxycholic acid (UDCA) derivatives work as ACE2 activators. In detail, we have identified two potent ACE2 ligands, BAR107 and BAR708, through a docking virtual screening campaign and elucidated their mechanism of action from essential dynamics of the enzyme observed during microsecond molecular dynamics calculations. The in silico results were confirmed by in vitro pharmacological assays with the newly identified compounds showing ACE2 activity comparable to that of DIZE, the most potent ACE2 activator known so far. Our work provides structural insight into ACE2/ligand-binding interaction useful for the design of compounds with therapeutic potential against SARS-CoV-2 infection, inflammation, and other ACE2-related diseases

    Discovery of a Potent and Orally Active Dual GPBAR1/CysLT1R Modulator for the Treatment of Metabolic Fatty Liver Disease

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are two highly prevalent human diseases caused by excessive fat deposition in the liver. Although multiple approaches have been suggested, NAFLD/NASH remains an unmet clinical need. Here, we report the discovery of a novel class of hybrid molecules designed to function as cysteinyl leukotriene receptor 1 (CysLT1R) antagonists and G protein bile acid receptor 1 (GPBAR1/TGR5) agonists for the treatment of NAFLD/NASH. The most potent of these compounds generated by harnessing the scaffold of the previously described CystLT1R antagonists showed efficacy in reversing liver histopathology features in a preclinical model of NASH, reshaping the liver transcriptome and the lipid and energy metabolism in the liver and adipose tissues. In summary, the present study described a novel orally active dual CysLT1R antagonist/GPBAR1 agonist that effectively protects against the development of NAFLD/NASH, showing promise for further development

    Global longitudinal strain at rest predicts significant coronary artery stenosis in patients with peripheral arterial disease

    Get PDF
    Abstract Funding Acknowledgements Type of funding sources: None. Background Critical peripheral artery disease (PAD) is expression of systemic chronic atherosclerosis, it being often associated with cardiovascular events. The assessment of global longitudinal strain (GLS) at rest by speckle tracking echocardiography could be useful to unmask significant coronary artery disease (CAD) in asymptomatic PAD patients. Purpose To determine whether resting GLS is able to predict significant coronary artery stenosis in PAD patients selected for peripheral or carotid angiography. Methods One-hundred three clinically relevant PAD patients (M/F = 76/27, age = 66.8 ± 10,2 years, 72 with significant lower limb artery stenosis and 31 with carotid artery stenosis ≥50%), asymptomatic for CAD, underwent standard echo-Doppler exam at rest, comprehensive of GLS analysis, prior peripheral and coronary angiography. Information on cardiovascular (CV) risk factors and comorbidities were collected. Patients with know CAD and previous myocardial infarction, left ventricular (LV) ejection fraction < 50% and inadequate echocardiographic imaging were excluded. According to the results of coronary angiography, patients were divided in two groups: with significant coronary artery stenosis (>50% of obstruction. n = 73) and without significant coronary artery lesions (n = 30). Results No intergroup difference in the prevalence of CV risk factors and comorbidities was found. Age, body mass index and blood pressure were comparable between the two groups. LV ejection fraction (59.9 ± 4.2% in patients with significant coronary stenosis vs. 60.2 ± 4.7% in those without coronary stenosis, p = 0.75) and wall motion score index (1.02 ± 0.09 vs 1.03 ± 0.09 respectively, p = 0.67) did not differ significantly. Conversely, GLS was lower in patients with significant coronary artery stenosis than in those without (21.6 ± 2.7% vs. 22.8 ± 2%, p < 0.02) (Figure 1). This difference remained significant comparing the carotid subgroup with coronary stenosis vs. those without (p < 0.05) whereas it did not achieve the statistical significance in patients with lower limb artery lesions (p = 0.42). Conclusion In PAD patients, GLS at rest shoes the capability in identifying patients at higher probability of significant coronary artery stenosis. This involves in particular patients with carotid artery stenosis. GLS might be helpful to select patients who need to extend the peripheral angiographic evaluation to the coronary tree

    Interaction Pattern of Arg 62 in the A-Pocket of Differentially Disease-Associated HLA-B27 Subtypes Suggests Distinct TCR Binding Modes

    Get PDF
    The single amino acid replacement Asp116His distinguishes the two subtypes HLA-B*2705 and HLA-B*2709 which are, respectively, associated and non-associated with Ankylosing Spondylitis, an autoimmune chronic inflammatory disease. The reason for this differential association is so far poorly understood and might be related to subtype-specific HLA:peptide conformations as well as to subtype/peptide-dependent dynamical properties on the nanoscale. Here, we combine functional experiments with extensive molecular dynamics simulations to investigate the molecular dynamics and function of the conserved Arg62 of the α1-helix for both B27 subtypes in complex with the self-peptides pVIPR (RRKWRRWHL) and TIS (RRLPIFSRL), and the viral peptides pLMP2 (RRRWRRLTV) and NPflu (SRYWAIRTR). Simulations of HLA:peptide systems suggest that peptide-stabilizing interactions of the Arg62 residue observed in crystal structures are metastable for both B27 subtypes under physiological conditions, rendering this arginine solvent-exposed and, probably, a key residue for TCR interaction more than peptide-binding. This view is supported by functional experiments with conservative (R62K) and non-conservative (R62A) B*2705 and B*2709 mutants that showed an overall reduction in their capability to present peptides to CD8+ T cells. Moreover, major subtype-dependent differences in the peptide recognition suggest distinct TCR binding modes for the B*2705 versus the B*2709 subtype

    Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy

    Get PDF
    none67si: Abnormal gut motility is a feature of several mitochondrial encephalomyopathies, and mutations in genes such as TYMP and POLG, have been linked to these rare diseases. The human genome encodes three DNA ligases, of which only one, ligase III (LIG3), has a mitochondrial splice variant and is crucial for mitochondrial health. We investigated the effect of reduced LIG3 activity and resulting mitochondrial dysfunction in seven patients from three independent families, who showed the common occurrence of gut dysmotility and neurological manifestations reminiscent of mitochondrial neurogastrointestinal encephalomyopathy. DNA from these patients was subjected to whole exome sequencing. In all patients, compound heterozygous variants in a new disease gene, LIG3, were identified. All variants were predicted to have a damaging effect on the protein. The LIG3 gene encodes the only mitochondrial DNA (mtDNA) ligase and therefore plays a pivotal role in mtDNA repair and replication. In vitro assays in patient-derived cells showed a decrease in LIG3 protein levels and ligase activity. We demonstrated that the LIG3 gene defects affect mtDNA maintenance, leading to mtDNA depletion without the accumulation of multiple deletions as observed in other mitochondrial disorders. This mitochondrial dysfunction is likely to cause the phenotypes observed in these patients. The most prominent and consistent clinical signs were severe gut dysmotility and neurological abnormalities, including leukoencephalopathy, epilepsy, migraine, stroke-like episodes, and neurogenic bladder. A decrease in the number of myenteric neurons, and increased fibrosis and elastin levels were the most prominent changes in the gut. Cytochrome c oxidase (COX) deficient fibres in skeletal muscle were also observed. Disruption of lig3 in zebrafish reproduced the brain alterations and impaired gut transit in vivo. In conclusion, we identified variants in the LIG3 gene that result in a mitochondrial disease characterized by predominant gut dysmotility, encephalopathy, and neuromuscular abnormalities.This work was supported by Telethon Grant GGP15171 to E.B. and R.D.G. and by a donation from Kobe city to the Department of General Pediatrics, Kobe University Graduate School of Medicine (K550003302). S.C. was supported by a Dutch Cancer Foundation grant (KWF11011). V.C. and A.M. were supported by the Italian Ministry of Health (“Ricerca Corrente” funding). R.D.G. is the recipient of grants from University of Ferrara (FAR and FIR funds).openBonora, Elena; Chakrabarty, Sanjiban; Kellaris, Georgios; Tsutsumi, Makiko; Bianco, Francesca; Bergamini, Christian; Ullah, Farid; Isidori, Federica; Liparulo, Irene; Diquigiovanni, Chiara; Masin, Luca; Rizzardi, Nicola; Cratere, Mariapia Giuditta; Boschetti, Elisa; Papa, Valentina; Maresca, Alessandra; Cenacchi, Giovanna; Casadio, Rita; Martelli, Pierluigi; Matera, Ivana; Ceccherini, Isabella; Fato, Romana; Raiola, Giuseppe; Arrigo, Serena; Signa, Sara; Sementa, Angela Rita; Severino, Mariasavina; Striano, Pasquale; Fiorillo, Chiara; Goto, Tsuyoshi; Uchino, Shumpei; Oyazato, Yoshinobu; Nakamura, Hisayoshi; Mishra, Sushil K; Yeh, Yu-Sheng; Kato, Takema; Nozu, Kandai; Tanboon, Jantima; Morioka, Ichiro; Nishino, Ichizo; Toda, Tatsushi; Goto, Yu-Ichi; Ohtake, Akira; Kosaki, Kenjiro; Yamaguchi, Yoshiki; Nonaka, Ikuya; Iijima, Kazumoto; Mimaki, Masakazu; Kurahashi, Hiroki; Raams, Anja; MacInnes, Alyson; Alders, Mariel; Engelen, Marc; Linthorst, Gabor; de Koning, Tom; den Dunnen, Wilfred; Dijkstra, Gerard; van Spaendonck, Karin; van Gent, Dik C; Aronica, Eleonora M; Picco, Paolo; Carelli, Valerio; Seri, Marco; Katsanis, Nicholas; Duijkers, Floor A M; Taniguchi-Ikeda, Mariko; De Giorgio, RobertoBonora, Elena; Chakrabarty, Sanjiban; Kellaris, Georgios; Tsutsumi, Makiko; Bianco, Francesca; Bergamini, Christian; Ullah, Farid; Isidori, Federica; Liparulo, Irene; Diquigiovanni, Chiara; Masin, Luca; Rizzardi, Nicola; Cratere, Mariapia Giuditta; Boschetti, Elisa; Papa, Valentina; Maresca, Alessandra; Cenacchi, Giovanna; Casadio, Rita; Martelli, Pierluigi; Matera, Ivana; Ceccherini, Isabella; Fato, Romana; Raiola, Giuseppe; Arrigo, Serena; Signa, Sara; Sementa, Angela Rita; Severino, Mariasavina; Striano, Pasquale; Fiorillo, Chiara; Goto, Tsuyoshi; Uchino, Shumpei; Oyazato, Yoshinobu; Nakamura, Hisayoshi; Mishra, Sushil K; Yeh, Yu-Sheng; Kato, Takema; Nozu, Kandai; Tanboon, Jantima; Morioka, Ichiro; Nishino, Ichizo; Toda, Tatsushi; Goto, Yu-Ichi; Ohtake, Akira; Kosaki, Kenjiro; Yamaguchi, Yoshiki; Nonaka, Ikuya; Iijima, Kazumoto; Mimaki, Masakazu; Kurahashi, Hiroki; Raams, Anja; MacInnes, Alyson; Alders, Mariel; Engelen, Marc; Linthorst, Gabor; de Koning, Tom; den Dunnen, Wilfred; Dijkstra, Gerard; van Spaendonck, Karin; van Gent, Dik C; Aronica, Eleonora M; Picco, Paolo; Carelli, Valerio; Seri, Marco; Katsanis, Nicholas; Duijkers, Floor A M; Taniguchi-Ikeda, Mariko; De Giorgio, Robert

    How future surgery will benefit from SARS-COV-2-related measures: a SPIGC survey conveying the perspective of Italian surgeons

    Get PDF
    COVID-19 negatively affected surgical activity, but the potential benefits resulting from adopted measures remain unclear. The aim of this study was to evaluate the change in surgical activity and potential benefit from COVID-19 measures in perspective of Italian surgeons on behalf of SPIGC. A nationwide online survey on surgical practice before, during, and after COVID-19 pandemic was conducted in March-April 2022 (NCT:05323851). Effects of COVID-19 hospital-related measures on surgical patients' management and personal professional development across surgical specialties were explored. Data on demographics, pre-operative/peri-operative/post-operative management, and professional development were collected. Outcomes were matched with the corresponding volume. Four hundred and seventy-three respondents were included in final analysis across 14 surgical specialties. Since SARS-CoV-2 pandemic, application of telematic consultations (4.1% vs. 21.6%; p < 0.0001) and diagnostic evaluations (16.4% vs. 42.2%; p < 0.0001) increased. Elective surgical activities significantly reduced and surgeons opted more frequently for conservative management with a possible indication for elective (26.3% vs. 35.7%; p < 0.0001) or urgent (20.4% vs. 38.5%; p < 0.0001) surgery. All new COVID-related measures are perceived to be maintained in the future. Surgeons' personal education online increased from 12.6% (pre-COVID) to 86.6% (post-COVID; p < 0.0001). Online educational activities are considered a beneficial effect from COVID pandemic (56.4%). COVID-19 had a great impact on surgical specialties, with significant reduction of operation volume. However, some forced changes turned out to be benefits. Isolation measures pushed the use of telemedicine and telemetric devices for outpatient practice and favored communication for educational purposes and surgeon-patient/family communication. From the Italian surgeons' perspective, COVID-related measures will continue to influence future surgical clinical practice
    corecore