127 research outputs found

    HLA Class I or Class II and Disease Association: Catch the Difference if You Can

    Get PDF
    The association of autoimmune diseases with HLA has been known for many decades. To date, however, the underlying mechanisms have not been fully understood. The recently introduced genome-wide association studies (GWAS) have suggested that several genes converging in common pathways contribute to the genetic susceptibility in such disorders. Nevertheless, for most autoimmune/autoinflammatory diseases, the HLA genes are by far the strongest risk factors. The basis of some associations has now been elucidated, particularly in those cases in which exogenous factors are involved

    Ankylosing Spondylitis: a trade Off of HLA-B27, ERAP, and pathogen interconnections? Focus on Sardinia

    Get PDF
    The frequency of HLA-B27 in patients with Ankylosing Spondylitis (AS) is over 85%. There are more than 170 recognized HLA-B27 alleles but the majority of them is not sufficiently represented for genetic association studies. So far only two alleles, the HLA-B*2706 in Asia and the HLA-B*2709 in Sardinia, have not been found to be associated with AS. The highly homogenous genetic structure of the Sardinian population has favored the search of relevant variants for disease-association studies. Moreover, malaria, once endemic in the island, has been shown to have contributed to shape the native population genome affecting the relative allele frequency of relevant genes. In Sardinia, the prevalence of HLA-B*2709, which differs from the strongly AS-associated B*2705 prototype for one amino acid (His/Asp116) in the F pocket of the peptide binding groove, is around 20% of all HLA-B27 alleles. We have previously hypothesized that malaria could have contributed to the establishment of this allele in Sardinia. Based on our recent findings, in this perspective article we speculate that the Endoplasmic Reticulum Amino Peptidases, ERAP1 and 2, associated with AS and involved in antigen presentation, underwent co-selection by malaria. These genes, besides shaping the immunopeptidome of HLA-class I molecules, have other biological functions that could also be involved in the immunosurveillance against malaria

    An allelic variant in the intergenic region between ERAP1 and ERAP2 correlates with an inverse expression of the two genes

    Get PDF
    The Endoplasmatic Reticulum Aminopeptidases ERAP1 and ERAP2 are implicated in a variety of immune and non-immune functions. Most studies however have focused on their role in shaping the HLA class I peptidome by trimming peptides to the optimal size. Genome Wide Association Studies highlighted non-synonymous polymorphisms in their coding regions as associated with several immune mediated diseases. The two genes lie contiguous and oppositely oriented on the 5q15 chromosomal region. Very little is known about the transcriptional regulation and the quantitative variations of these enzymes. Here, we correlated the level of transcripts and proteins of the two aminopeptidases in B-lymphoblastoid cell lines from 44 donors harbouring allelic variants in the intergenic region between ERAP1 and ERAP2. We found that the presence of a G instead of an A at SNP rs75862629 in the ERAP2 gene promoter strongly influences the expression of the two ERAPs with a down-modulation of ERAP2 coupled with a significant higher expression of ERAP1. We therefore show here for the first time a coordinated quantitative regulation of the two ERAP genes, which can be relevant for the setting of specific therapeutic approaches

    Frequency of the New HLA-B*2709 Allele in Ankylosing Spondylitis Patients and Healthy Individuals

    Get PDF
    We have recently described a new HLA-B27 subtype, named HLA-B*2709 (Del Porto et al. 1994). This allele is identical to the subtype most frequently found in Caucasoids, HLA-B*2705, except for a single amino acid substitution (Asp to His) in position 116. This residue, that is part of the F pocket of the molecule, has been shown to be relevant in determining which C-terminal amino acid of HLA-class I-binding peptides can be accomodated into the groove (Elliott, 1993). In nonamer peptides, this aminoacid corresponds to a primary anchor position (P9; Madden et al., 1992). Accordingly, we have previously shown that B2709 molecule hardly accepts nonamer peptides with an Arg or Tyr in P9, while the same amino acids represent good anchors for B2705 molecules (Fiorillo et al., 1995). Special attention is focused on HLA-B27 subtypes because of the strong association of B27 with ankylosing spondylitis (AS). More than 90% of AS patients are B27-positive and, conversely, about 4% of B27-positive individuals in the population are affected. This represents a relative risk over 100, that is the highest in HLA-disease associations. However, little is known on the pathogenic mechanisms of the disease. Following the hypothesis that an antigenic B27-binding peptide is involved in the disease (the so-called arthritogenic peptide), differential association with the different B27 subtypes may give a clue on the nature of such peptide. If two subtypes of partially overlapping peptide binding specificity are found to be both AS-associated, this would restrict the search for peptides that can be bound by both allelic products. Conversely, if a B27 subtype is found to be non AS-associated, this would be even more helpful in eliminating an array of peptides as possible candidates

    AIF-1 gene does not confer susceptibility to Behçet's disease: Analysis of extended haplotypes in Sardinian population

    Get PDF
    Background BehcEet's disease (BD) is a polygenic immune-mediated disorder characterized by a close association with the HLA-B∗51 allele. The HLA region has a strong linkage disequilibrium (LD) and carries several genetic variants (e.g. MIC-A, TNF-α genes) identified as associated to BD because of their LD with HLA-B∗51. In fact, the HLA-B∗51 is inherited as part of extended HLA haplotypes which are well preserved in patients with BD. Sardinian population is highly differentiated from other Mediterranean populations because of a distinctive genetic structure with very highly preserved HLA haplotypes. Patients and methods In order to identify other genes of susceptibility to BD within the HLA region we investigated the distribution of human Allograft Inflammatory Factor-1 (AIF-1) gene variants among BD patients and healthy controls from Sardinia. Six (rs2736182; rs2259571; rs2269475; rs2857597; rs13195276; rs4711274) AIF-1 single nucleotide polymorphisms (SNPs) and related extended haplotypes have been investigated as well as their LD within the HLA region and with HLA-B∗51. Overall, 64 BD patients, 43 HLA-B∗51 positive healthy controls (HC) and 70 random HC were enrolled in the study. Results HLA-B∗51 was the only allele with significantly higher frequency (pc = 0.0021) in BD patients (40.6%) than in HC (9.8%). The rs2259571TAIF-1 variant had a significantly reduced phenotypic, but not allelic frequency in BD patients (72.1%; pc = 0.014) compared to healthy population (91.3%). That was likely due to the LD between HLA-B∗51 and rs2259571G(pc= 9E-5), even though the rs2259571Gdistribution did not significantly differ between BD patients and HC. Conclusion No significant difference in distribution of AIF-1 SNPs haplotypes was observed between BD patients and HC and between HLA-B∗51 positive BD patients and HLA-B∗51 positive HC. Taken together, these results suggest that AIF-1 gene is not associated with susceptibility to BD in Sardinia

    Expression analysis of HLA-E and NKG2A and NKG2C receptors points at a role for natural killer function in ankylosing spondylitis

    Get PDF
    Background. Ankylosing Spondylitis (AS) is a complex chronic inflammatory disease strongly associated with the majority of HLA-B27 alleles. HLA-E are non-classical MHC class I molecules that specifically interact with the natural killer receptors NKG2A (inhibitory) and NKG2C (activating), and have been recently proposed to be involved in AS pathogenesis. Objectives: To analyze the expression of HLA-E and the CD94/NKG2 pair of receptors in HLA-B27 positive AS patients and healthy controls (HC) bearing the AS-associated, B*2705 and the non-AS-associated, B*2709 allele. Methods: The level of surface expression of HLA-E molecules on CD14 positive peripheral blood mononuclear cell was evaluated in 21 HLA-B*2705 patients with AS, 12 HLA-B*2705 HC, 12 HLA-B*2709 HC and 6 HLA-B27 negative HC, using the monoclonal antibody MEM-E/08 by quantitative cytofluorimetric analysis. The percentage and density of expression of HLA-E ligands NKG2A and NKG2C were also measured on CD3-CD56+ NK cells. Results. HLA-E expression in CD14 positive cells was significantly higher in AS patients (587.0 IQR 424-830) compared to B*2705 HC (389 IQR 251.3-440.5, p=0.0007), B*2709 HC (294.5 IQR 209.5-422, p=0.0004) and HLA-B27 negative HC (380 IQR 197.3-515.0, p=0.01). A higher number of NK cells expressing NKG2A compared to NKG2C was found in all cohort analysed as well as a higher cell surface density. Conclusion: The higher surface level of HLA-E molecules in AS patients compared to HC, concurrently with a prevalent expression of NKG2A, suggests that the crosstalk between these two molecules might play a role in AS pathogenesis accounting for the previously reported association between HLA-E and AS

    Staphylococcal enterotoxin B (SEB) activates TCR- and CD28-mediated inflammatory signals in the absence of MHC class II molecules

    Get PDF
    The inflammatory activity of staphylococcal enterotoxin B (SEB) relies on its capacity to trigger polyclonal T‐cell activation by binding both T‐cell receptor (TCR) and costimulatory receptor CD28 on T cells and MHC class II and B7 molecules on antigen presenting cells (APC). Previous studies highlighted that SEB may bind TCR and CD28 molecules independently of MHC class II, yet the relative contribution of these interactions to the pro‐inflammatory function of SEB remained unclear. Here, we show that binding to MHC class II is dispensable for the inflammatory activity of SEB, whereas binding to TCR, CD28 and B7 molecules is pivotal, in both human primary T cells and Jurkat T cell lines. In particular, our finding is that binding of SEB to B7 molecules suffices to trigger both TCR‐ and CD28‐mediated inflammatory signalling. We also provide evidence that, by strengthening the interaction between CD28 and B7, SEB favours the recruitment of the TCR into the immunological synapse, thus inducing lethal inflammatory signallin

    Interaction Pattern of Arg 62 in the A-Pocket of Differentially Disease-Associated HLA-B27 Subtypes Suggests Distinct TCR Binding Modes

    Get PDF
    The single amino acid replacement Asp116His distinguishes the two subtypes HLA-B*2705 and HLA-B*2709 which are, respectively, associated and non-associated with Ankylosing Spondylitis, an autoimmune chronic inflammatory disease. The reason for this differential association is so far poorly understood and might be related to subtype-specific HLA:peptide conformations as well as to subtype/peptide-dependent dynamical properties on the nanoscale. Here, we combine functional experiments with extensive molecular dynamics simulations to investigate the molecular dynamics and function of the conserved Arg62 of the α1-helix for both B27 subtypes in complex with the self-peptides pVIPR (RRKWRRWHL) and TIS (RRLPIFSRL), and the viral peptides pLMP2 (RRRWRRLTV) and NPflu (SRYWAIRTR). Simulations of HLA:peptide systems suggest that peptide-stabilizing interactions of the Arg62 residue observed in crystal structures are metastable for both B27 subtypes under physiological conditions, rendering this arginine solvent-exposed and, probably, a key residue for TCR interaction more than peptide-binding. This view is supported by functional experiments with conservative (R62K) and non-conservative (R62A) B*2705 and B*2709 mutants that showed an overall reduction in their capability to present peptides to CD8+ T cells. Moreover, major subtype-dependent differences in the peptide recognition suggest distinct TCR binding modes for the B*2705 versus the B*2709 subtype

    Predicting Important Residues and Interaction Pathways in Proteins Using Gaussian Network Model: Binding and Stability of HLA Proteins

    Get PDF
    A statistical thermodynamics approach is proposed to determine structurally and functionally important residues in native proteins that are involved in energy exchange with a ligand and other residues along an interaction pathway. The structure-function relationships, ligand binding and allosteric activities of ten structures of HLA Class I proteins of the immune system are studied by the Gaussian Network Model. Five of these models are associated with inflammatory rheumatic disease and the remaining five are properly functioning. In the Gaussian Network Model, the protein structures are modeled as an elastic network where the inter-residue interactions are harmonic. Important residues and the interaction pathways in the proteins are identified by focusing on the largest eigenvalue of the residue interaction matrix. Predicted important residues match those known from previous experimental and clinical work. Graph perturbation is used to determine the response of the important residues along the interaction pathway. Differences in response patterns of the two sets of proteins are identified and their relations to disease are discussed

    Optogenetic Mimicry of the Transient Activation of Dopamine Neurons by Natural Reward Is Sufficient for Operant Reinforcement

    Get PDF
    Activation of dopamine receptors in forebrain regions, for minutes or longer, is known to be sufficient for positive reinforcement of stimuli and actions. However, the firing rate of dopamine neurons is increased for only about 200 milliseconds following natural reward events that are better than expected, a response which has been described as a “reward prediction error” (RPE). Although RPE drives reinforcement learning (RL) in computational models, it has not been possible to directly test whether the transient dopamine signal actually drives RL. Here we have performed optical stimulation of genetically targeted ventral tegmental area (VTA) dopamine neurons expressing Channelrhodopsin-2 (ChR2) in mice. We mimicked the transient activation of dopamine neurons that occurs in response to natural reward by applying a light pulse of 200 ms in VTA. When a single light pulse followed each self-initiated nose poke, it was sufficient in itself to cause operant reinforcement. Furthermore, when optical stimulation was delivered in separate sessions according to a predetermined pattern, it increased locomotion and contralateral rotations, behaviors that are known to result from activation of dopamine neurons. All three of the optically induced operant and locomotor behaviors were tightly correlated with the number of VTA dopamine neurons that expressed ChR2, providing additional evidence that the behavioral responses were caused by activation of dopamine neurons. These results provide strong evidence that the transient activation of dopamine neurons provides a functional reward signal that drives learning, in support of RL theories of dopamine function
    corecore