145 research outputs found

    Polyelectrolyte-coated mesoporous bioactive glasses via layer-by-layer deposition for sustained co-delivery of therapeutic ions and drugs

    Get PDF
    In the field of bone regeneration, considerable attention has been addressed towards the use of mesoporous bioactive glasses (MBGs), as multifunctional therapeutic platforms for advanced medical devices. In fact, their extremely high exposed surface area and pore volume allow to load and the release of several drugs, while their framework can be enriched with specific therapeutic ions allowing to boost the tissue regeneration. However, due to the open and easily accessible mesopore structure of MBG, the release of the incorporated therapeutic molecules shows an initial burst effect leading to unsuitable release kinetics. Hence, a still open challenge in the design of drug delivery systems based on MBGs is the control of their release behavior. In this work, Layer-by-layer (LbL) deposition of polyelectrolyte multi-layers was exploited as a powerful and versatile technique for coating the surface of Cu-substituted MBG nanoparticles with innovative multifunctional drug delivery systems for co-releasing of therapeutic copper ions (exerting pro-angiogenic and anti-bacterial effects) and an anti-inflammatory drug (ibuprofen). Two different routes were investigated: in the first strategy, chitosan and alginate were assembled by forming the multi-layered surface, and, successively, ibuprofen was loaded by incipient wetness impregnation, while in the second approach, alginate was replaced by ibuprofen, introduced as polyelectrolyte layer. Zeta-potential, TGA and FT-IR spectroscopy were measured after the addition of each polyelectrolyte layer, confirming the occurrence of the stepwise deposition. In addition, the in vitro bioactivity and the ability to modulate the release of the cargo were evaluated. The polyelectrolyte coated-MBGs were proved to retain the peculiar ability to induce hydroxyapatite formation after 7 days of soaking in Simulated Body Fluid. Both copper ions and ibuprofen were co-released over time, showing a sustained release profile up to 14 days and 24 h, respectively, with a significantly lower burst release compared to the bare MBG particles

    Understanding Selectivity of Mesoporous Silica-Grafted Diglycolamide-Type Ligands in the Solid-Phase Extraction of Rare Earths

    Get PDF
    Rare earth elements (REEs) and their compounds are essential for rapidly developing modern technologies. These materials are especially critical in the area of green/sustainable energy; however, only very high-purity fractions are appropriate for these applications. Yet, achieving efficient REE separation and purification in an economically and environmentally effective way remains a challenge. Moreover, current extraction technologies often generate large amounts of undesirable wastes. In that perspective, the development of selective, reusable, and extremely efficient sorbents is needed. Among numerous ligands used in the liquid-liquid extraction (LLE) process, the diglycolamide-based (DGA) ligands play a leading role. Although these ligands display notable extraction performance in the liquid phase, their extractive chemistry is not widely studied when such ligands are tethered to a solid support. A detailed understanding of the relationship between chemical structure and function (i.e., extraction selectivity) at the molecular level is still missing although it is a key factor for the development of advanced sorbents with tailored selectivity. Herein, a series of functionalized mesoporous silica (KIT-6) solid phases were investigated as sorbents for the selective extraction of REEs. To better understand the extraction behavior of these sorbents, different spectroscopic techniques (solid-state NMR, X-ray photoelectron spectroscopy, XPS, and Fourier transform infrared spectroscopy, FT-IR) were implemented. The obtained spectroscopic results provide useful insights into the chemical environment and reactivity of the chelating ligand anchored on the KIT-6 support. Furthermore, it can be suggested that depending on the extracted metal and/or structure of the ligand and its attachment to KIT-6, different functional groups (i.e., C= O, N-H, or silanols) act as the main adsorption centers and preferentially capture targeted elements, which in turn may be associated with the different selectivity of the synthesized sorbents. Thus, by determining how metals interact with different supports, we aim to better understand the solid-phase extraction process of hybrid (organo)silica sorbents and design better extraction materials

    Sr-containing mesoporous bioactive glasses bio-functionalized with recombinant ICOS-Fc: An in vitro study

    Get PDF
    Osteoporotic bone fractures represent a critical clinical issue and require personalized and specific treatments in order to stimulate compromised bone tissue regeneration. In this clinical context, the development of smart nano-biomaterials able to synergistically combine chemical and biological cues to exert specific therapeutic effects (i.e., pro-osteogenic, anti-clastogenic) can allow the design of effective medical solutions. With this aim, in this work, strontium-containing mesoporous bioactive glasses (MBGs) were bio-functionalized with ICOS-Fc, a molecule able to reversibly inhibit osteoclast activity by binding the respective ligand (ICOS-L) and to induce a decrease of bone resorption activity. N2 adsorption analysis and FT-IR spectroscopy were used to assess the successful grafting of ICOS-Fc on the surface of Sr-containing MBGs, which were also proved to retain the peculiar ability to release osteogenic strontium ions and an excellent bioactivity after functionalization. An ELISA-like assay allowed to confirm that grafted ICOS-Fc molecules were able to bind ICOS-L (the ICOS binding ligand) and to investigate the stability of the amide binding to hydrolysis in aqueous environment up to 21 days. In analogy to the free form of the molecule, the inhibitory effect of grafted ICOS-Fc on cell migratory activity was demonstrated by using ICOSL positive cell lines and the ability to inhibit osteoclast differentiation and function was confirmed by monitoring the differentiation of monocyte-derived osteoclasts (MDOCs), which revealed a strong inhibitory effect, also proven by the downregulation of osteoclast differentiation genes. The obtained results showed that the combination of ICOS-Fc with the intrinsic properties of Sr-containing MBGs represents a very promising approach to design personalized solutions for patients affected by compromised bone remodeling (i.e., osteoporosis fractures)

    The mycorrhizal root-shoot axis elicits Coffea arabica growth under low phosphate conditions

    Get PDF
    Coffee is one of the most traded commodities world-wide. As with 70% of land plants, coffee is associated with arbuscular mycorrhizal (AM) fungi, but the molecular bases of this interaction are unknown. We studied the mycorrhizal phenotype of two commercially important Coffea arabica cultivars (‘Typica National’ and ‘Catimor Amarillo’), upon Funnelliformis mosseae colonisation grown under phosphorus limitation, using an integrated functional approach based on multi-omics, physiology and biochemistry. The two cultivars revealed a strong biomass increase upon mycorrhization, even at low level of fungal colonisation, improving photosynthetic efficiency and plant nutrition. The more important iconic markers of AM symbiosis were activated: We detected two gene copies of AM-inducible phosphate (Pt4), ammonium (AM2) and nitrate (NPF4.5) transporters, which were identified as belonging to the C. arabica parental species (C. canephora and C. eugenioides) with both copies being upregulated. Transcriptomics data were confirmed by ions and metabolomics analyses, which highlighted an increased amount of glucose, fructose and flavonoid glycosides. In conclusion, both coffee cultivars revealed a high responsiveness to the AM fungus along their root-shoot axis, showing a clear-cut re-organisation of the major metabolic pathways, which involve nutrient acquisition, carbon fixation, and primary and secondary metabolism

    Spray‐Dried Mesoporous Mixed Cu‐Ni Oxide@Graphene Nanocomposite Microspheres for High Power and Durable Li‐Ion Battery Anodes

    Get PDF
    Exfoliated graphene‐wrapped mesoporous Cu‐Ni oxide (CNO) nanocast composites are developed using a straightforward nanostructure engineering strategy. The synergistic effect of hierarchical mesoporous CNO nanobuilding blocks that are homogeneously wrapped by graphene nanosheets (GNSs) using a rapid spray drying technique effectively preserves the electroactive species against the volume changes resulting from the charge/discharge process. Owing to the intriguing structural/morphological features arising from the caging effect of exfoliated graphene sheets, these 3D/2D CNO@GNS nanocomposite microspheres are promising as high‐performance Li‐ion battery anode materials. They exhibit unprecedented electrochemical behavior, such as high reversible specific capacity (initial discharge capacities exceeding 1700 mAh g−1 at low 0.1 mA g−1, stable 850 and 730 mAh g−1 at 1 and 5 mA g−1 after 800 and 1300 cycles, respectively, and higher than 400 mAh g−1 at very high current density of 10 mA g−1 after more than 2000 cycles), excellent coulombic efficiency and long‐term stability (more than 3000 cycles with >55% capacity retention) at high current density that are remarkable compared to most transition metal oxides and nanocomposites prepared by conventional techniques. This simple, yet innovative, material design is inspiring to develop advanced conversion materials for Li‐ion batteries or other energy storage devices

    Multi-omics approaches explain the growth-promoting effect of the apocarotenoid growth regulator zaxinone in rice

    Get PDF
    Wang et al. report zaxinone as a global regulator of the transcriptome and metabolome, as well as of hormonal and cellular composition of rice roots. This study shows that zaxinone promotes rice growth by enhancing root sugar uptake and metabolism and modulation of cytokinin content, indicating the potential application of this compound in increasing rice performance

    Management of mixed cryoglobulinemia with rituximab: evidence and consensus-based recommendations from the Italian Study Group of Cryoglobulinemia (GISC)

    Get PDF
    Cryoglobulinemic vasculitis (CV) or mixed cryoglobulinemic syndrome (MCS) is a systemic small-vessel vasculitis characterized by the proliferation of B-cell clones producing pathogenic immune complexes, called cryoglobulins. It is often secondary to hepatitis C virus (HCV), autoimmune diseases, and hematological malignancies. CV usually has a mild benign clinical course, but severe organ damage and life-threatening manifestations can occur. Recently, evidence in favor of rituximab (RTX), an anti-CD 20 monoclonal antibody, is emerging in CV: nevertheless, questions upon the safety of this therapeutic approach, especially in HCV patients, are still being issued and universally accepted recommendations that can help physicians in MCS treatment are lacking. A Consensus Committee provided a prioritized list of research questions to perform a systematic literature review (SLR). A search was made in Medline, Embase, and Cochrane library, updated to August 2021. Of 1227 article abstracts evaluated, 27 studies were included in the SLR, of which one SLR, 4 RCTs, and 22 observational studies. Seventeen recommendations for the management of mixed cryoglobulinemia with rituximab from the Italian Study Group of Cryoglobulinemia (GISC) were developed to give a valuable tool to the physician approaching RTX treatment in CV

    Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase

    Get PDF
    Carbapenems, 'last-resort' β-lactam antibiotics, are inactivated by zinc-dependent metallo-β-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, because those enzymes are readily degraded in their nonmetallated form. However, the New Delhi metallo-β-lactamase (NDM-1) can persist under conditions of metal depletion. NDM-1 is a lipidated protein that anchors to the outer membrane of Gram-negative bacteria. Membrane anchoring contributes to the unusual stability of NDM-1 and favors secretion of this enzyme in outer-membrane vesicles (OMVs). OMVs containing NDM-1 can protect nearby populations of bacteria from otherwise lethal antibiotic levels, and OMVs from clinical pathogens expressing NDM-1 can carry this MBL and the bla[subscript NDM] gene. We show that protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies.Kinship Foundation. Searle Scholars ProgramMassachusetts Institute of Technology. Department of Chemistr

    Surface-functionalized mesoporous gallosilicate catalysts for the efficient and sustainable upgrading of glycerol to solketal

    No full text
    Two series of functionalized mesoporous Ga silicates were prepared in a straightforward and sustainable one-pot procedure using different alkyl silanes. The efficacy of the adopted co-synthetic approach based on aerosol processing has been proved by 29Si solid-state NMR experiments revealing a degree of functionalization close to the theoretical value. The successful incorporation of gallium as single sites within the silica framework was confirmed via71Ga solid-state magic-angle-spinning NMR measurements. These materials were tested as catalysts for the synthesis of solketal from glycerol at low temperature and under solventless conditions. A systematic study evidenced the importance of a careful tuning of surface polarity, achievable with surface functionalization as well as with different thermal treatments. The solids functionalized with a low degree of methyl groups (5%) displayed enhanced performances compared to the non-functionalized analogues, highlighting the highly beneficial role of surface hydrophobicity as well as the importance of the careful tuning of the hydrophilic/hydrophobic balance. The best functionalized catalysts proved to be easily reusable for multiple catalytic runs. With such a high-performance catalyst in hand, we propose a process which shows a favorable E-factor, indicating that the production of solketal can be envisaged in a sustainable way

    Aerosol-assisted synthesis of mesoporous aluminosilicate microspheres: The effect of the aluminum precursor

    No full text
    The development of a cost-effective process for the production of mesostructured aluminosilicates, with high Al content and controlled morphology, is highly desired. In this work, mesoporous aluminosilicates, with spherical morphology, have been synthesized under mild acidic aqueous conditions by using an aerosol-assisted sol-gel process, a simple, versatile and potentially scalable method. Two aluminum sources, aluminum isopropoxide and aluminum chloride, have been used, keeping constant the other synthesis and process parameters. FE-SEM, coupled with EDX, TEM and N2 adsorption-desorption measurements have shown that sprayed powders consist of microspheres, homogeneous in size and characterized by high surface areas (up to 640 m2 g-1) and narrow pore size distributions (centred at 2.5 nm). 27Al-NMR spectra of as-synthesized samples have evidenced mostly tetrahedral Al, also for the sample with higher Al content (Si/Al = 5.7). The surface acidity of the sprayed samples has been investigated by FT-IR spectroscopy of adsorbed ammonia and CO, which has shown the presence of Brønsted sites (able to protonate ammonia) and of weak Lewis sites
    • …
    corecore