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Abstract: In the field of bone regeneration, considerable attention has been addressed towards the

use of mesoporous bioactive glasses (MBGs), as multifunctional therapeutic platforms for advanced

medical devices. In fact, their extremely high exposed surface area and pore volume allow to load

and the release of several drugs, while their framework can be enriched with specific therapeutic

ions allowing to boost the tissue regeneration. However, due to the open and easily accessible

mesopore structure of MBG, the release of the incorporated therapeutic molecules shows an initial

burst effect leading to unsuitable release kinetics. Hence, a still open challenge in the design of drug

delivery systems based on MBGs is the control of their release behavior. In this work, Layer-by-layer

(LbL) deposition of polyelectrolyte multi-layers was exploited as a powerful and versatile technique

for coating the surface of Cu-substituted MBG nanoparticles with innovative multifunctional drug

delivery systems for co-releasing of therapeutic copper ions (exerting pro-angiogenic and anti-

bacterial effects) and an anti-inflammatory drug (ibuprofen). Two different routes were investigated:

in the first strategy, chitosan and alginate were assembled by forming the multi-layered surface, and,

successively, ibuprofen was loaded by incipient wetness impregnation, while in the second approach,

alginate was replaced by ibuprofen, introduced as polyelectrolyte layer. Zeta-potential, TGA and

FT-IR spectroscopy were measured after the addition of each polyelectrolyte layer, confirming the

occurrence of the stepwise deposition. In addition, the in vitro bioactivity and the ability to modulate

the release of the cargo were evaluated. The polyelectrolyte coated-MBGs were proved to retain the

peculiar ability to induce hydroxyapatite formation after 7 days of soaking in Simulated Body Fluid.

Both copper ions and ibuprofen were co-released over time, showing a sustained release profile

up to 14 days and 24 h, respectively, with a significantly lower burst release compared to the bare

MBG particles.

Keywords: bone regeneration; layer by layer deposition; drug delivery system; sustainable co-release;

ibuprofen; copper ions

1. Introduction

Since Vallet Regì’s [1] and Zhao’s [2] groups proposed for the first time the use of
mesoporous bioactive glasses (MBGs) for biomedical applications, their role in the bone
regeneration field [3] and soft tissue applications [4] were extensively studied. To date,
MBGs continued to receive considerable attention as multifunctional biomedical devices [5],
due to the possibility to combine their capability to induce hydroxyapatite deposition with
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the ability to store and release therapeutic species exploiting their mesoporous structure.
In fact, their extremely high exposed surface area and pore volume allow the loading of
active agents, such as drugs or growth factors, and their chemical composition can be easily
tailored for specific applications [6,7] through the incorporation of selected metal ions (i.e.,
Cu, Sr) during the synthesis. By following this strategy, a single biomaterial can be designed
and enriched with several therapeutic abilities, spanning from pro-osteogenic [8,9] to pro-
angiogenic or anti-bacterial properties [10].

Based on these considerations, MBGs could play a pivotal role in the field of bone
healing application as controlled drug delivery systems and can be considered excellent
candidates as multifunctional delivery platforms for prolonged and localized release of
therapeutic agents (ions, drugs, growth factors), in order to simultaneously target the
several causes connected to an impaired bone healing. In fact, conventional administration
routes, such as oral administration and injection, resulting in low levels of the therapeutic
agents and often present various side effects. The low levels of therapeutic agents in the
tissue are due to poor blood circulation and inadequate tissue penetration characteristics
of bone tissue. Therefore, an efficient and adequate delivery in the pathological site is
not achieved [11]. At variance, sustained drug release from biomaterials could enhance
the delivery efficiency, maintaining a suitable therapeutic dose over time directly at the
pathological site, reducing, in the meantime, the related side effects.

Over the last years, the scientific community devoted great efforts to develop drug
delivery systems by combining active agents with biocompatible materials in order to
achieve a sustained local release [12,13]. MBGs, due to their excellent bioactivity and
peculiar structural features, represent one of the most promising biomaterials, perfectly
owning all the requirements to conceive advanced devices for drug delivery in the field
of bone tissue repair [14]. To date, despite their excellent drug loading capacities, some
drawbacks are still limiting MBG clinical translation, in particular, the strong burst release
of incorporated drugs once in contact with body fluids due to the open mesopore structure.

Many attempts have been committed to designing formulations based on MBGs able
to modulate the cargo release kinetics, such as a surface modification or the combination
with polymeric vehicle phase to produce a hybrid formulation [15–17]. By exploiting the
high number of terminal hydroxyl groups, the MBG surface can be easily functionalized,
achieving several targets such as the reduction of particle aggregation and nonspecific
surface adhesion [18–20] or an improvement of drug loading capacity and longer drug
release time [1,21–24].

Despite the efficacy of these promising functionalization approaches, most of these
explored strategies are based on covalent binding and usually require several synthetic
steps involving potentially toxic by-products, which can lead to an enhancement of the
material’s cytotoxicity. As an alternative, the layer-by-layer (LbL) deposition can be consid-
ered a faster and greener approach, offering a promising possibility for the noncovalent
engineering of surfaces to modulate the release behavior of therapeutic agents [25]. More
in detail, the LbL deposition involves the electrostatic interactions between oppositely
charged polyelectrolytes, which are alternatively assembled on the outer surface [26]. Usu-
ally, the layer deposition is repeated several times, leading to the formation of thermally
and mechanically stable polyelectrolyte multi-layers (PEMs) [27]. The control of the depo-
sition parameters, such as the ionic strength, the pH, or the temperature, allows obtaining
PEMs with peculiar features in terms of layer organization, thickness, surface charge, and
wettability [28]. In addition, the wide range of materials, which could be coated, both as
flat substrates or in the form of particulate (including glass, quartz, silicon wafers, mica,
and different polymers) fostered the research interest in this field, highlighting the potential
of LbL technology for various applications, spanning from fuel-cells and dye-sensitized
solar cells preparation, biosensor and gas sensor preparation to thin films deposition for
anti-reflection or flame retardant treatment [29–31]. Depending on the final application, the
multi-layers can be tailored by using synthetic or natural polymers, or their mixture [32].
Among the different classes of polyelectrolytes, in the field of biomedical applications,
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it is essential to privilege the use of natural polyelectrolytes, such as components of the
extracellular matrix (hyaluronate, collagen, elastin, fibronectin, laminin), proteins (pro-
tamine, gelatin), nucleic acids (DNA and RNA) and biopolymers (alginate, chitosan, silk
fibroin) [33,34], in order to avoid any cytotoxic effect induced by the coating and maintain
the overall biocompatibility of the material.

Since PEMs can also be assembled on the surface of nano- and micro-particles, the
LbL deposition could be considered as a promising strategy to design drug delivery
systems to control the payload release profile, in which the therapeutic agents could be
both incorporated into the multi-layered structures or, the alternative, themselves act as
charged polyelectrolyte. Several examples of LbL applications in the field of drug delivery
systems are reported in the literature, both by exploiting the polyelectrolyte multi-layers
to design microcapsules and to develop a multifunctional coating. Shi and Caruso [35]
investigated the release profiles and rates of pyrene from microcapsules composed of PEMs,
reporting that the release rate was tailored by modifying the number of polyelectrolyte
layers. Yang et al. [36] produced mesoporous silica nanoparticles loaded with antitumor
drug and then coated with alginate and chitosan, which are well known as biodegradable
and biocompatible polymers by using the LbL technique. The developed system was able
to act as pH-sensitive gatekeepers, enabling the release of drug molecules once in contact
with an acidic environment. Moreover, the authors performed cytotoxicity assays and
reported higher biocompatibility for the polymer-coated compared to the bare samples.
Zhou et al. [26] employed alginate and chitosan to coat poly (lactide-co-glycolide) (PLGA)
nanoparticles to develop a biocompatible drug delivery system able to impart antifouling
properties in addition to reduce nonspecific cell uptake. The authors demonstrated very
low interaction with albumin, confirming the antifouling properties and a related decrease
in the cellular uptake compared to the bare samples.

In this work, the LbL approach was successfully applied to the surface of MBG-
based nanoparticles with the aim to design and characterize multifunctional biomaterials
for tissue regeneration applications, to be used as drug delivery systems able to act as
nanocarriers showing a sustained co-release of both therapeutic ions and anti-inflammatory
drug. More in detail, the co-release of ibuprofen and copper ions was considered as a
promising strategy for promoting healing of soft and hard tissues since the release of
ibuprofen was expected to contrast the spreading of the inflammatory phase during the
first stage of the healing process and, simultaneously, the release of copper ions was
expected to stimulate the angiogenesis processes and exert antimicrobial activity, overall
promoting regeneration. Recently in this regard, the dual therapeutic effect of copper ions
released by MBG nanoparticles was finely proved by Paterson et al. [37], who showed
remarkable anti-bacterial activity against both planktonic and biofilm bacteria with a
broad spectrum of antimicrobial action, whilst showing no cytotoxicity in either 2D cell
monolayers or a 3D human skin model. In addition, a clear proangiogenic effect of both
MBGs and Cu-containing MBGs was also confirmed by an increase in endothelial cell
outgrowth seen at concentrations between 30 and 300 µg/mL.

The authors recently reported the development of injectable hybrid formulations
for bone healing applications by combining poly (ether urethane) (PEU) hydrogels with
Cu-containing MBGs loaded with ibuprofen with the final goal to simultaneously promote
angiogenesis, anti-microbial, and anti-inflammatory effects [16] and proved the ability of
the resulting system to modulate the ion/drug co-release, avoiding the undesired burst
effect, typical of MBGs. Inspired by these promising results, in this contribution, by simply
exploiting the negatively charged surface of the MBG, we investigated the LbL deposition of
polyelectrolytes on the surface of Cu-substituted MBG nanoparticles loaded with ibuprofen
as an alternative strategy to achieve a sustained co-release of copper ions and drug.

In particular, thanks to the possibility to load the ibuprofen both in the mesopores of
the MBG and as PEM in the multi-layered coating, two different LbL assembly routes were
investigated, and the release properties of the resulting systems were compared. In the first
strategy, the polyelectrolytes chitosan and alginate were selected as natural biodegradable
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and biocompatible polymers and were alternatively deposited by exploiting their opposite
positive and negative charges, respectively. Once obtained the LbL coated-MBGs, ibuprofen
was loaded into the MBG pores by using the incipient wetness technique. In the second
approach, the alginate layer was replaced by the ibuprofen (loaded as polyelectrolyte layer)
by exploiting the ibuprofen negative charge (COO−), able to electrostatically interact with
the chitosan positive charges. Since the LbL deposition is usually conducted on flat surfaces,
the optimization of the overall procedure to coat the MBG particle surface required different
adjustments in terms of the number of deposited layers in order to preserve the peculiar
structural and chemical features of the MBGs (i.e., morphology, ion release and bioactivity).
The two obtained systems were then evaluated in terms of capability to avoid the burst
release observed in the uncoated samples and to modulate the release rate of both the
incorporated copper ions and loaded ibuprofen.

2. Materials and Methods

2.1. Materials

Cetyltrimethylammonium bromide (CTAB ≥ 98%), NH4OH (Ammonium hydroxide
solution), Tetraethyl orthosilicate (TEOS, Tetraethyl orthosilicate, reagent grade 98%), Ca
(NO3)2·4H2O, 99%), Copper chloride (CuCl2 99%), ibuprofen (>98% GC), Chitosan (low
molecular weight), Alginic acid (sodium salt), Sodium hydroxide, Hydrochloric acid (ACS
reagent, 37%), and Trizma® base, Primary Standard and Buffer, ≥99.9% (titration) were all
purchased from Sigma Aldrich, Milan, Italy and used as received without any purification.

2.2. LbL-Coated Cu-Substituted MBGs as Ibuprofen Delivery System

Cu-substituted MBGs nanoparticles (nominal molar ratio Cu/Ca/Si = 2/13/85, here-
after named as Cu_SG) were prepared using a base-catalyzed template sol-gel synthesis,
following the protocol optimized by the authors [15,16]. The multi-layered surface was
obtained by following two different routes, as reported schematically in Figure 1, in or-
der to produce drug delivery systems able to differently modulate the release kinetics
of both copper ions and ibuprofen. In the first strategy, chitosan and alginate were as-
sembled by forming the multi-layered surface, and, successively, ibuprofen was loaded
by incipient wetness impregnation, following the protocol optimized by the authors [16].
On the contrary, in the second strategy, alginate was replaced by ibuprofen by exploit-
ing the ibuprofen negative charge of deprotonated carboxylic moieties (COO−), able to
electrostatically interact with the chitosan positive charged groups.

Figure 1. Schematic illustration of the two different routes adopted to produce drug delivery systems able to differently

modulate the release kinetics of both copper ions and ibuprofen.
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2.2.1. Cu-Substituted MBG Nanoparticles

6.6 g of CTAB, acting as template agent and 12 mL of NH4OH were dissolved in
600 mL of ddH2O under magnetic stirring (350 rpm) for 30 min. Then, 30 mL of TEOS,
4.888 g of Ca(NO3)2 · 4H2O and 0.428 g of CuCl2 were added, and the obtained suspen-
sion was vigorously stirred for 3 h at room temperature (RT). The powder was collected
by centrifugation (Hermle Labortechnik Z326, Hermle LaborTechnik GmbH, Wehingen,
Germany) at 10,000× g rpm for 5 min, washed twice with ddH2O, and once with absolute
ethanol. The collected powder was dried at 70 ◦C for 12 h and calcined at 600 ◦C in air for
5 h at a heating rate of 1 ◦C min−1 using a Carbolite 1300 CWF 15/5 (Carbolite Ltd., Hope
Valley, UK), in order to remove CTAB completely.

2.2.2. LbL Deposition of Chitosan and Alginate: First Strategy

Chitosan (Chi) and alginate (Alg) were assembled in a concentration of 1 mg/mL in
water by following the procedure reported in the literature [26]. The pH value of each
electrolyte solution was adjusted to 5 by the addition of glacial acetic acid or 1 M NaOH.
For the assembly of Chi/Alg multi-layers on the MBG surface, the deposition time of each
polyelectrolyte layer was 15 min. After each polyelectrolyte deposition, particles were
centrifuged at 10,000× g rpm for 3 min and washed 3 times with water before deposition of
the next layer. Initially, in the preliminary investigation, up to 10 layers were deposited on
the MBG surface. However, based on FE-SEM observations, the samples coated with more
than 4 layers showed the undesired formation of particle agglomerates embedded in a
polymer phase. On the contrary, the deposition of 3 layers was found to be optimal to obtain
multi-layered coated particles, avoiding the formation of agglomerates and preserving
the peculiar features of the MBGs (morphology, size, bioactive behavior). Based on these
considerations, 3 layers were deposited, a first layer of chitosan, a second of alginate, and
the last one of chitosan, and the related material was referred to as Cu_SG_CAC.

Ibuprofen was loaded into Cu_SG_CAC through the incipient wetness method [16,38].
In brief, 0.1 g of Cu_SG_CAC were impregnated several times by dropping consecutive
small aliquots of an ibuprofen solution in ethanol (at the final concentration of 30 mg/mL)
onto the powders at RT. After each impregnation, ethanol was evaporated at 50 ◦C for
10 min, and the dried powder was mixed with a spatula. In order to completely fill the
mesopores with ibuprofen, the impregnation procedure was carried out with 4 × 100 µL
aliquots. Lastly, the obtained powders were dried at 50 ◦C overnight and named as
follows: Cu_SG_CAC_Ibu.

2.2.3. LbL Deposition of Chitosan and Ibuprofen: Second Strategy

Chitosan and ibuprofen were assembled in a concentration of 1 mg/mL in water
and ethanol, respectively. The pH value of each electrolyte solution was adjusted to 5
by the addition 1 M NaOH. For the assembly of the multi-layers on the MBGs surface,
the deposition time of each polyelectrolyte layer was 15 min. After each polyelectrolyte
deposition, particles were centrifuged at 10,000× g rpm for 3 min and washed 3 times
with water and once with ethanol before deposition of the next layer. Three layers were
deposited, the first layer of chitosan, a second of ibuprofen, and the last one of chitosan,
and the related material were referred to as Cu_SG_CIC.

2.3. Physico-Chemical Characterization of LbL-Coated Cu-MBGs

The morphology of bare and coated MBG nanoparticles was analyzed by Field-
Emission Scanning Electron Microscopy (FE-SEM) using a ZEISS MERLIN instrument
(Oberkochen, Germany). For FE-SEM observations, 10 mg of the samples were dispersed
in 10 mL of isopropanol using an ultrasonic bath (Digitec DT 103H, Bandelin, Berlin, Ger-
many) for 5 min to obtain a stable suspension. The resulting suspension was dropped
onto a copper grid (3.05 mm Diam.200 MESH, TAAB, Aldermaston, Berks, UK), dried and
successively chromium-coated prior to imaging (Cr layer of ~7 nm).



Pharmaceutics 2021, 13, 1952 6 of 18

Transmission Electron Microscopy (TEM) imaging was performed on a JEOL JEM300FEG
electron microscope equipped with an ISIS 300 X-ray microanalysis system (Oxford Instru-
ments, Abingdon-on-Thames, UK). The uncoated Cu_SG sample was ultrasonically dispersed
in n-butanol and transferred to carbon-coated nickel grids prior to the image acquisition.

Textural properties were analyzed by N2 adsorption-desorption measurement con-
ducted by ASAP2020, Micromeritics analyzer (ASAP 2020 Plus Physisorption, Norcross,
GA, USA) at a temperature of –196 ◦C, and before measurements, samples were outgassed
at 150 ◦C for 5 h. The Brunauer–Emmett–Teller (BET) model equation was used to cal-
culate the specific surface area (SSABET) from the adsorption branch of the isotherm in
the 0.04–0.2 relative pressure range. The mesoporous silica pore size distribution was
calculated through the DFT method (Density Functional Theory) using the NLDFT kernel
of equilibrium isotherms (desorption branch).

The multistep deposition of selected components was characterized by Fourier Trans-
form infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), and ζ potential
measurements. FT-IR spectra were collected using an FT-IR spectrometer (Bruker Equinox
55 spectrometer) in the 4000–400 cm−1 wavenumber range. TGA was conducted on a
TG 209 F1 Libra instrument (Netzsch, Erich NETZSCH GmbH & Co. Holding KG, Selb,
Germany) over a temperature range of 25–600 ◦C with a heating rate of 10 ◦C/min under
air in a flow of 50 mL/min). ζ-potential measurements (Zetasizer nano ZS90 Malvern
Instruments Ltd., Malvern, UK) were conducted in aqueous media, and 3 analyzes repeated
for each sample (shown data are the means ± standard deviations).

2.4. Copper Ions and Ibuprofen Release from LbL-Coated MBGs

Release studies of both ibuprofen and Cu2+ ions were conducted at 37 ◦C using
Trizma® as a release medium by using nanoparticle suspension with a concentration of
20 mg/mL. In particular, 40 mg of powder were suspended in 2 mL of buffer up to 24 h
at 37 ◦C in an orbital shaker (Excella E24, Eppendorf, Germany) with an agitation rate of
150 rpm. At predefined time points (1 h, 3 h, 5 h, 8 h, 24 h), the suspension was centrifuged
at 10,000× g rpm for 5 min by using a Hermle Labortechnik Z326 (Hermle LaborTechnik
GmbH, Wehingen, Germany), the supernatant was collected and replaced by the same
volume of fresh buffer solution to keep constant the volume of the release medium. The
release experiments were carried out in triplicate. The concentration of the ibuprofen was
measured by UV-Vis spectrometer by measuring the absorbance at 274 nm. The collected
extracts were also analyzed by ICP to measure the concentration of released copper ions. In
order to express the results in terms of released percentage and to evaluate the total amount
of ions incorporated during the synthesis, the powders were dissolved in a mixture of
nitric and hydrofluoric acids (0.5 mL of HNO3 and 2 mL of HF for 10 mg of powder), and
the resulting solutions were analyzed via ICP analysis. Each experiment was performed in
triplicate and data were presented as means ± standard deviations.

Since the copper release did not reach the plateau at 24 h, to properly evaluate the
copper release profile and assess the effect on the release kinetics due to the presence of
the multi-layer deposition, the copper release test was prolonged up to 14 days by adding
further time points (2 d, 3 d, 8 d, 10 d, 14 d).

2.5. In Vitro Bioactivity of LbL-Coated MBGs

Since the bioactivity of the MBGs was considered an essential feature for promoting
bone regeneration and thus one of the fundamental properties of the developed materials,
bioactivity test was carried out on LbL coated MBGs by following the protocol reported
by Maçon et al. [39] in which the authors described a unified method to evaluate the
apatite-forming ability of the bioactive glasses.

In detail, the in vitro bioactivity test was performed by soaking the particles in Sim-
ulated Body Fluid (SBF) for up to 14 days. In brief, 30 mg of Cu_SG_CAC_Ibu and
Cu_SG_CIC were soaked in 30 mL of SBF (final concentration 1 mg/mL), following the
protocol described in the literature [39] at 37 ◦C up to 14 days in an orbital shaker (Excella
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E24, Eppendorf) with an agitation rate of 150 rpm. At each time point (3 h, 1 day, 3 days,
7 days and 14 days), the suspension was centrifuged at 10,000× g rpm for 5 min, the
collected powder was washed twice with distilled water and dried in the oven at 70 ◦C for
12 h prior FE-SEM and XRD analysis to evaluate the apatite layer formation. Moreover, the
pH of each recovered supernatant was measured to assess if the values were suitable for
allowing osteoblasts to maintain their physiological activity [40].

3. Results and Discussion

3.1. Morphological, Structural, and Chemical Characterization of Cu_SG_CAC_Ibu

FE-SEM images of Cu_SG_CAC_Ibu, reported in Figure 2A showed nanoparticles
with a size ranging between 100 and 300 nm. Compared to the bare samples, in which
the homogeneous average size was reported to be around 150 nm (also confirmed by the
TEM image, as reported in Figure S1) [15,16], a slight increase of about 50–100 nm, as
well as heterogeneity in particle size, were observed, ascribed to the occurrence of the
surface modification upon the deposition of the chitosan and alginate layers. Based on
ellipsometric measurements reported in the literature, the layer thickness when chitosan
and alginate were deposited on a flat silicon wafer was expected to increase linearly
with the number of layers of about 10 nm [25,41,42]. Hence, assuming the deposition of
three layers on a spherical surface, the overall diameter increase associated with the CAC
layer deposition was expected to be around 60 nm, finely aligned to the increase in size
observed for the Cu_SG_CAC_Ibu compared to the bare particles. Despite this assumption,
the assessment of the homogeneous coating on the spherical surface of the particles and
the coating thickness cannot be clearly evaluated by using FE-SEM images. In fact, the
thickness of the multi-layer system is usually evaluated by ellipsometric measurements or
Atomic Force Microscopy (AFM) after the deposition on a flat substrate, which allows the
homogeneous coating of the surface [43]. However, FE-SEM observations confirmed that
the LbL procedure and the subsequent ibuprofen loading did not significantly affect the
morphology of both the particles.

Figure 2. FE-SEM images of (A) Cu_SG_CAC_Ibu and (B) Cu_SG_CIC.

Figure 2B shows the FE-SEM observations of Cu_SG_CIC. Concerning the Cu_SG_CIC,
as already notified for the Cu_SG particle coated with CAC, nanoparticles with a size
ranging between 100 and 300 nm were obtained, showing the same morphology of the
corresponding bare samples Cu_SG. In some isolated cases, the build-up of multi-layers
on the particles surface was accompanied by a slight increase in particle size, as observed
for the Cu_SG_CAC_Ibu sample [25]. Since the multi-layer deposition with chitosan and
ibuprofen has never been reported in the literature and the growth in the size of chitosan
and ibuprofen layers cannot be compared with similar works, the layer thickness of the
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CIC samples cannot be clearly estimated by FE-SEM observations, even if a lower increase
can be predictable due to the smaller steric hindrance of ibuprofen molecule compared
to the alginate chain. Based on the morphological evaluation, it can be concluded that
irrespective of the adopted LbL deposition procedure, the overall morphology of the coated
MBG nanoparticles resulted mostly unaffected.

Since the LbL deposition could induce an undesired release of copper ions during the
procedure, the chemical composition of coated copper-substituted MBGs was evaluated
via ICP analysis after the dissolution of the particles in a mixture of nitric and hydrofluoric
acids, evidencing that the amount of copper content resulted unaffected, confirming that
the LbL deposition did not induce any loss of initial copper amount.

N2 adsorption-desorption was carried out both on bare and analog coated samples
to analyze the specific surface area, pore size, and pore volume. Both Cu_SG_CAC_Ibu
and Cu_SG_CIC showed type IV isotherms, substantially different compared to that of the
analog sample before LbL deposition (Figure 3A,B). As expected, the amount of adsorbed
nitrogen and the calculated specific surface area was significantly lower in the case of the
LbL coated samples. The almost full coverage of the mesopores by the deposited layers is
shown in Figure 3C,D, where a drastic pore volume reduction was reported, at variance
with the uncoated sample, showing average pore size of 4 nm. As reported in Table 1 and
Figure 3 Cu_SG_CAC_Ibu showed a more extensive decrease of the specific surface area and
pore volume, suggesting that the deposited layers fully blocked the entrance of mesopores.
Cu_SG_CIC showed a smaller decrease in specific surface area and pore volume compared
to Cu_SG_CAC_Ibu. These results suggest that ibuprofen loaded through the incipient
wetness method was mostly adsorbed deep inside the mesopores, contributing to a further
decrease of surface area and pore volume compared to the Cu_SG_CIC, where the drug
molecules were mostly entrapped into the multi-layers deposited at the external surface.

Figure 3. Type IV isotherm of (A) Cu_SG_CAC_Ibu and (B) Cu_SG_CIC and pore size distribution of (C) Cu_SG_CAC_Ibu

and (D) Cu_SG_CIC.
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Table 1. The specific surface area of Cu_SG, Cu_SG_CAC_Ibu and Cu_SG_CIC.

Sample
Specific Surface Area

(m2/g)

Cu_SG 685
Cu_SG_CAC_Ibu 125

Cu_SG_CIC 276

In order to evaluate the weight increase associated with the deposited layer and
ibuprofen loading, TGA analysis was performed after each layer deposition step and drug
incorporation. Related results are reported in Figure 4, where, as expected, the peaks of the
derivative curves showed larger weight loss after each layer deposition. Interestingly, in
the first derivative of Cu_SG_CAC_Ibu, the curve shows a second broad peak in the range
from 350 to 500 ◦C, ascribable to the loss of ibuprofen molecules loaded into the mesopores
and/or partly entrapped in the multi-layers at the surface during the incipient wetness
method. The calculations related to the range between 220 ◦C and 500 ◦C and reported in
Table 2 indicate that the weight loss percentage associated with the first layer of chitosan
was about 6.6% of the initial sample mass, while regarding the successive layers, the weight
loss of the second alginate layer and the third chitosan layer was about 7.5% and 5.8%,
respectively. The ibuprofen loading by incipient wetness method into CAC-coated sample
resulted very efficient in terms of drug incorporation since the weight loss after this step
results in 10.5% compared with the sample before drug loading.

Figure 4. TGA first derivative for each loading step of (A) Cu_SG_CAC_Ibu and (B) Cu_SG_CIC, in the temperature range

considered for the weight loss calculation.

Table 2. Weight loss percentages associated with each deposited layer and ibuprofen loading.

Cu_SG_CAC_Ibu Cu_SG_CIC

Layer Weight Loss (%) Layer Weight Loss (%)

chitosan 6.6 chitosan 6.6
alginate 7.5 ibuprofen 0.2
chitosan 5.8 chitosan 6.1

loaded ibuprofen 10.5

The results of the TGA analysis of Cu_SG_CIC are reported in Figure 4B. The weight
loss percentage after ibuprofen loading resulted very low, ~ 0.2%, suggesting a reduced
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drug loading capacity. Finally, the mass loss percentage of the third chitosan layer resulted
similar to that reported for the first one.

FT-IR spectra of LbL coated samples allowed to detect the presence of the peaks associ-
ated with chitosan, alginate, and ibuprofen. Figure 5 reports the spectra of Cu_SG_CAC_Ibu
and Cu_SG_CIC compared with the bare sample.

Figure 5. FT-IR spectra of (A) Cu_SG_CAC_Ibu and (B) Cu_SG_CIC. Black lines denote the C–H stretching and bending,

and the red line and asterisk indicates the C=O stretching of the carboxylate groups and the blue line and asterisk indicate

the N–H bending.

The large absorption detectable for both spectra at around 3500 cm−1 was ascribed
to stretching vibration of the NH2 and OH groups engaged in H-bonding [44–46]. The
peaks in the range of 2871–2959 cm−1 can be attributed to CH symmetric and asymmetric
stretching of chitosan and alginate for Cu_SG_CAC_Ibu and of chitosan for Cu_SG_CIC
typical of polysaccharide molecules [46]. The shoulder at around at 1650 cm−1 present in
both Cu_SG_CAC_Ibu and Cu_SG_CIC spectra (blue asterisk) can be ascribed to the N–H
bending of the pronated amino group of chitosan.

The intense peak at around 1560 cm−1 (red asterisk) only observable for Cu_SG_CAC_Ibu
sample is ascribable to C=O stretching of the carboxylate groups (COO−) of the alginate
layer [44,46] and ibuprofen molecule. At variance, this band is clearly not detectably visible
for the Cu_SG_CIC spectrum, most likely due to the low quantity of loaded ibuprofen. In
the last region of the spectra (1369–1458) the peaks can be imputed to CH2 bending of the
chitosan, alginate, and ibuprofen [41,43].

In order to evaluate the correct alternative deposition of chitosan, alginate, and ibupro-
fen, the ζ-potential was measured after the addition of each polyelectrolyte layer. Along
with confirming the presence and coverage of the polymer coating, ζ-potential measure-
ments allowed to assess the stability of particle suspensions. In fact, ζ-potential values
above +20 mV or around −20 mV can usually be considered an indication of stability and
enhanced uniformity, ascribed to the strong repulsion forces among particles, allowing to
prevent aggregation [47]. As shown in Figure 6 and reported in Table 3, for all samples,
after the first deposition of chitosan, the surface charge moved from negative values (due
to the deprotonation of surface silanols) to positive values due to the positively charged
amine groups of the chitosan. The deposition of the second layer of alginate or ibuprofen
induces a charge inversion on the surface due to the negatively charged carboxylate groups
of alginate and ibuprofen, followed by the last charge inversion after the deposition of the
third layer of chitosan. The last layer of chitosan showed a positive charge, confirming the
occurrence of the stepwise deposition driven by the electrostatic interactions. In addition,
the high values measured for all the analyzed samples indicate the high stability of the
particle suspension.
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Figure 6. Potential measurement of (A) Cu_SG_CAC_Ibu, and (B) Cu_SG_CIC after each layer deposition.

Table 3. Potential (mV) values of Cu_SG_CAC_Ibu, and Cu_SG_CIC after each layer deposition.

Cu_SG_CAC_Ibu Cu_SG_CIC

Cu_SG −13 ± 0.6 Cu_SG −13 ± 0.6
Chitosan 50 ± 3.8 Chitosan 41 ± 3.8
Alginate −29 ± 3.2 Ibuprofen −21 ± 3.4
Chitosan 21 ± 2.2 Chitosan 27 ± 5.0

3.2. Bioactive Behavior of LbL-Coated MBGs in SBF

FE-SEM images of Cu_SG_CAC after soaking in SBF clearly confirmed that the layer-
by-layer deposition and the successive ibuprofen loading did not hinder the bioactive
behavior of Copper-substituted MBG samples. Compared to the corresponding bare
samples, a slowing delay in the deposition of the hydroxyapatite layer was observed for
both samples. In fact, a rough layer of globular agglomerates on the surface of the particles
appeared after 7 days of soaking (Figure 7(A1)) and not after just 1 day, as observed for the
corresponding bare samples. As shown in Figure 7(A2), the presence of HA crystals was
revealed by the EDS analysis performed on powders, which evidenced a Ca/P ratio close
to 1.7, typical of HA [48,49].

The slowdown in the HA deposition is ascribed to the presence of the polyelectrolyte
multi-layered coating. In fact, the inter-diffusion of the shorter polymer chains of alginate
into the longer polymer chains of chitosan, due to the possibility of molecular rearrange-
ments subsequent to first contact [50], leads to a formation of a denser network [25,50].
This dense polymer network is expected to hinder to some extent, the ionic exchange
reactions involved at the interface of the MBGs and the medium and is essential to start the
HA formation.

Despite this delay, the Cu_SG_CAC_Ibu retained their ability to promote the HA
formation, an essential feature for promoting bone regeneration.

As far as the Cu_SG_CIC is concerned, FE-SEM images evidenced that hydroxyapatite
formation occurred after only 1 day of soaking, resulting in a compact layer of needle-such
as nanocrystals covering the particle surface. The agglomerates of apatite-like phase in-
creased in size during the test, causing the full embedding of the particle surface after 7
days of soaking, as highlighted in Figure 7(B1). EDS analysis, reported in Figure 7(B2), fur-
ther confirms the presence of HA, revealed by the appearance of phosphorous and a Ca/P
ratio very close to 1.7, the typical value reported in the literature for hydroxyapatite. Unlike
the layer-by-layer deposition strategy reported previously (Cu_SG_CAC_Ibu sample), the
polyelectrolyte multi-layered coating based on chitosan, ibuprofen, and chitosan seems to
not delay the deposition of the hydroxyapatite layer, which results unaffected compared
to the corresponding bare samples [15,16]. This behavior could be ascribed to the low
molecular weight of the ibuprofen, that compared to the steric hindrance of alginate, lead to
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a formation of a more open network, and could be explained from different modes of reac-
tion between ibuprofen/chitosan and alginate/chitosan. In fact, some extents of ibuprofen
could stick to chitosan on first contact (diffusion-limited mode of interaction), limiting the
molecular rearrangement [50], and thus leading to a more open network, which allows
the faster ion exchanges essential for the HA formation. On the contrary, the diffusion
of alginate into the longer polymer chains of chitosan allows molecular rearrangements
subsequent to first contact, forming a denser network [25], responsible of the delay in the
ionic exchange reaction.

Both Cu_SG_CAC_Ibu and Cu_SG_CIC retained their ability to induce HA forma-
tion, allowing to preserve an essential feature of this material for application in bone
regeneration processes.

Figure 7. FE-SEM observation (A1) and EDS spectrum (A2) of Cu_SG_CAC_Ibu and FE-SEM

observation (B1) and EDS spectrum (B2) of Cu_SG_CIC after 7 days of soaking in SBF.

3.3. Copper Release from Cu_SG_CAC_Ibu and Cu_SD_CAC_Ibu

The copper release profile of Cu_SG_CAC_Ibu and Cu_SG_CIC was evaluated in
Tris-HCl medium (pH 7.4) and compared to the copper release profile of the bare samples;
samples were incubated at 37 ◦C up to 14 days and, at selected time points (1 h, 3 h, 5 h,
8 h, 24 h, 2 d, 3 d, 8 d, 10 d, 14 d) the suspension was centrifuged and the supernatant
withdrawn and analyzed by ICP-AES. As shown in Figure 8, a significantly prolonged
release profile of up to 14 days was observed for both the Cu_SG_CAC_Ibu and Cu_SG_CIC
samples, evidencing that just 30% of the total amount of copper was released after 3 h,
compared to the burst release observed for the Cu_SG sample (95% of total amount)
followed by a sustained release of copper up to 14 days. The slower copper release rate
observed for Cu_SG_CAC_Ibu and Cu_SG_CIC could be ascribed to the long path length,
and the slowed-down diffusion of the medium throughout the polymer layers [51], since
the polyelectrolyte multi-layer, acting as a barrier, was expected to hinder the contact
between the ion and the release medium. The build-up of multi-layers on Cu-substituted
MBGs successfully decreased the undesirable initial burst release of Cu2+ species typically
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observed for particles as such. In fact, after 1 h incubation in similar releasing conditions,
Cu_SG_CAC_Ibu and Cu_SG_CIC released an amount of copper ions approximately 80%
and 70% lower compared to the corresponding bare MBG particles, confirming the ability
of the multi-layered coating to prevent the typical burst release effect observed for the
bare MBG particles. In addition, at the end of the experiment (14 days), Cu_SG_CAC_Ibu
and Cu_SG_CIC particles were still present in the medium and, as observed in Figure 8,
the release curve did not reach the plateau. These observations could suggest that the
dense polyelectrolyte multi-layer effectively acts as a barrier, limiting the interaction of
MBG surface with the medium, thus slow downing the ion-exchange reaction and the
overall dissolution processes. For this reason, after 14 days, the system was still capable of
releasing copper ions, further confirming that the presence of the multi-layered coating can
be exploited to produce multifunctional devices with a sustained release over 14 days.

Figure 8. Copper release profile of (A) Cu_SG_CAC_Ibu and (B) Cu_SG_CIC in Tris-HCl compared to the bare

sample Cu_SG.

It is worth highlighting that the release kinetics observed for the Cu_SG_CAC_Ibu
and results were slower compared to the Cu_SG_CIC and this behavior can be ascribed
to the denser and ticker polymer network obtained after the chitosan/alginate/chitosan
deposition, more effectively able to hinder the contact between the particles and the
medium. On contrary, the less closely packed of the chitosan/ibuprofen/chitosan coating
allowed faster medium diffusion and thus the copper release.

3.4. Ibuprofen Release from Cu_SG_CAC_Ibu and Cu_SG_CIC

Ibuprofen release test was performed in Tris-HCl up to 24 h. Figure 9 showed the
release profile of ibuprofen from Cu_SG_CAC_Ibu powders compared to the corresponding
bare samples. An evidently sustained release profile of loaded drug up to 1 day of soaking
in the release medium was observed, thus confirming the ability of the multi-layered
coating to modulate the burst release typically reported for mesoporous carriers. In fact,
compared to the release profile of the corresponding bare samples in which the total
amount of loaded ibuprofen was released in the first hour, only 38% of the total amount of
loaded drug was released after one hour of soaking from Cu_SG_CAC_Ibu, suggesting a
significant slowdown in the release rate.
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Figure 9. Ibuprofen release profiles of Cu_SG_CAC_Ibu compared with bare samples.

The modulation in release rate could be ascribed to the electrostatic interactions
between the drug and the polyelectrolyte multi-layers. In fact, the strong ionic interactions
between the amine groups of the chitosan and the carboxyl groups of the ibuprofen could
potentially hinder the diffusion pathways of ibuprofen among the layers, thus delaying
the contact between the drug and the release medium, as already reported for the copper
release. In addition, the presence of the polyelectrolyte multi-layer increases the diffusional
path, thereby causing the tendency for the delayed release of ibuprofen.

The release profile of ibuprofen from Cu_SG_CIC was similarly evaluated in Tris-HCl.
Figure 10 showed the release profile of ibuprofen from Cu_SG_CIC in terms of milligrams
of released drug overtime, and not as a percentage of ibuprofen released since the amount
of drug effectively incorporated could not be clearly evaluated by the TGA, probably due
to the decomposition of chitosan, which occurred in the same range as ibuprofen. As
shown in Figure 10, different drug release curves were obtained depending on the method
used to incorporate ibuprofen. In fact, a more sustained release profile can be observed
for the Cu_SG_CIC system, compared with the Cu_SG_CAC_Ibu. This behavior could
probably be ascribed to the direct interactions established between the carboxylate groups
of ibuprofen and the protonated amines of chitosan during the assembly.

Figure 10. Ibuprofen release profiles of Cu_SG_CIC compared with Cu_SG_CAC_Ibu samples.
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In addition, since the drug release was a mainly diffusion-controlled process, as
confirmed by many previous studies [23,52,53], the presence of a multi-layered coating can
hinder the contact between the drug and the medium, thus delaying the diffusion of the
ibuprofen into the release medium. It was worth noticing that, also, in this case, the release
kinetics of the CIC samples was slower compared to the bare samples, demonstrating that
the presence of hydrogen bonding between chitosan and ibuprofen and the presence of
the multi-layered coating, which act as a barrier between the drug and the medium could
effectively modulate the ibuprofen release rate.

Since the main goal of this work was the development of an advanced, versatile
drug/ion release platform in which the release was modulated by the LbL deposition, in
order to validate the release profile in biological conditions and the synergy of the two
therapeutic agents able to simultaneously induce tissue healing and an anti-inflammatory
effect, in vitro and in vivo experiments need to be properly planned. However, to ensure its
effectiveness, the released concentration of ibuprofen needs to fall within the proper thera-
peutic window. Shah et al. reported that ibuprofen exerted its anti-inflammatory effects
when the concentration was >50 µg/mL [54]. Both the designed systems, in the experi-
mental conditions selected for the release test in vitro, perfectly matched this concentration
from the first hour of release. However, depending on the final application, a fine opti-
mization of the ibuprofen deposited as well as of the amount of ibuprofen loaded through
the incipient wetness method could allow the design of systems releasing an efficacious
and cytocompatibility amount of ibuprofen over time. In fact, according to Cantòn et al.,
ibuprofen exerts its anti-inflammatory effects with no cytotoxicity within the concentration
range 0.1–1 mM [55]. In addition, two different applications and corresponding dosages of
ibuprofen can be distinguished [56,57]: within 0.1 and 0.14 mM concentrations, ibuprofen
was reported to exert anti-inflammatory, antipyretic, and analgesic effects, meanwhile
higher dosages within the range 0.2–0.3 mM were required to treat chronic diseases such
as rheumatoid arthritis and osteoarthritis. The potentiality and versatility of the developed
drug/ion release platforms rely on the modulation of both the timing and the dosage of
the ibuprofen release in order to target the requirements of each specific application, thus
allowing to obtain the proper therapeutic effect and avoiding cytotoxicity.

4. Conclusions

In this work, innovative multifunctional drug delivery systems for the delivery of both
copper ions (exerting pro-angiogenic and anti-bacterial effects) and an anti-inflammatory
drug (ibuprofen) were developed by exploiting the layer-by-layer deposition technique.
To this purpose, the surface of Cu-substituted MBG (2% mol) nanoparticles was modified
by using two different approaches. On the one hand, the polyelectrolytes chitosan and
alginate have been alternatively deposited on the MBG surface, and ibuprofen was loaded
by using the incipient wetness technique. On the other hand, the alginate layer was
replaced by ibuprofen molecules, loaded as polyelectrolyte layer. Irrespective of the
adopted procedures, the bioactive behavior of the particles was maintained, preserving
an essential feature for promoting bone regeneration. Both the investigated procedures
allowed to modulate the release kinetic of both copper and ibuprofen, allowing a sustained
ion/drug co-release. In fact, a prolonged copper release profile up to 14 days was observed,
with a strong reduction of the burst release in the first hours of soaking compared to the
bare analog sample. The release modulation can be associated to the long path length
and the amount of time needed for the ions to diffuse into the polymer layers before
reaching the medium. In addition, the release of copper from the CAC-coated samples
resulted slower compared to the CIC-coated samples, probably due to the denser polymer
network obtained after the chitosan/alginate/chitosan deposition that hinders the contact
between the particles and the medium. On the contrary, the more open network of the
chitosan/ibuprofen/chitosan coating is expected to allow more easily the medium diffusion
and thus the copper release. Concerning the ibuprofen release, sustained release profile
up to 1 day of soaking was reached for both the systems, evidencing the role of the LbL
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coating in strongly reducing the burst release observed for the bare samples, most likely
due to the occurrence of ionic interactions between the protonated amine groups of the
chitosan and the carboxylate groups of ibuprofen.

Overall, the obtained results proved layer-by-layer deposition as a promising tech-
nique to design a drug delivery system that modulates the drug and therapeutic ion release
from MBGs. In addition, by tailoring the number of the deposited layers or the amount
of the loaded drug, versatile drug delivery systems can be developed as a smart platform
for soft and hard tissue healing applications. With this perspective, a comprehensive
biological validation of the developed LbL coated nanocarriers, including cytotoxicity
assessment, the evaluation of the ion/drug co-release under biological conditions and the
exerted synergistic therapeutic effect (simultaneously pro-angiogenic, anti-inflammatory,
and anti-bacterial) will be the focus of further research investigation by the authors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3

390/pharmaceutics13111952/s1, Figure S1: (A) TEM image and (B) FE-SEM image of un-coated Cu_SG.
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