8,019 research outputs found

    Survival probability of surface excitations in a 2d lattice: non-Markovian effects and Survival Collapse

    Full text link
    The evolution of a surface excitation in a two dimentional model is analyzed. I) It starts quadratically up to a spreading time t_{S}. II) It follows an exponential behavior governed by a self-consistent Fermi Golden Rule. III) At longer times, the exponential is overrun by an inverse power law describing return processes governed by quantum diffusion. At this last transition time t_{R} a survival collapse becomes possible, bringing the survival probability down by several orders of magnitude. We identify this strongly destructive interference as an antiresonance in the time domain.Comment: 4 pages, 3 figures. Braz. Journ. of Phys., in press. Braz. Journ. of Phys., in press. Braz. Journ. of Phys., in press. Braz. Journ. of Phys., in press. Braz. Journ. of Phys., in press. Braz. Journ. of Phys., in press. Braz. Journ. of Phys., in pres

    Survival Probability of a Local Excitation in a Non-Markovian Environment: Survival Collapse, Zeno and Anti-Zeno effects

    Full text link
    The decay dynamics of a local excitation interacting with a non-Markovian environment, modeled by a semi-infinite tight-binding chain, is exactly evaluated. We identify distinctive regimes for the dynamics. Sequentially: (i) early quadratic decay of the initial-state survival probability, up to a spreading time tSt_{S}, (ii) exponential decay described by a self-consistent Fermi Golden Rule, and (iii) asymptotic behavior governed by quantum diffusion through the return processes and leading to an inverse power law decay. At this last cross-over time tRt_{R} a survival collapse becomes possible. This could reduce the survival probability by several orders of magnitude. The cross-overs times tSt_{S} and tRt_{R} allow to assess the range of applicability of the Fermi Golden Rule and give the conditions for the observation of the Zeno and Anti-Zeno effect

    Experimental investigations on the tuning of active gate drivers under load current variations

    Get PDF
    Active Gate Drivers have gained of interest as they allow one to shape the switching waveforms finely, thus reducing overshoots and oscillations. However, when fast power switches are exploited, the tuning of such drivers is still challenging. This paper investigates the adjustment of gate current profile under load variations, which is a crucial issue when targeting practical applications. Indeed, a technique, based on the stretching of time intervals, is proposed and its effectiveness, in terms of undershoot reduction, is experimentally assessed

    Migration, humanitarianism, and the politics of knowledge: An interview with Juliano Fiori

    Get PDF
    In this interview with Elena Fiddian-Qasmiyeh, Juliano Fiori—Head of Studies (Humanitarian Affairs) at Save the Children—reflects on Eurocentrism and coloniality in studies of and responses to migration. In the context of ongoing debates about the politics of knowledge and the urgency of anticolonial action, Fiori discusses the ideological and epistemological bases of responses to migration, the Western character of humanitarianism, the “localization of aid” agenda, and the political implications of new populisms of the Right

    Effective one-body dynamics in multiple-quantum NMR experiments

    Get PDF
    A suitable NMR experiment in a one-dimensional dipolar coupled spin system allows one to reduce the natural many-body dynamics into effective one-body dynamics. We verify this in a polycrystalline sample of hydroxyapatite (HAp) by monitoring the excitation of NMR many-body superposition states: the multiple-quantum coherences. The observed effective one-dimensionality of HAp relies on the quasi 1d structure of the dipolar coupled network that, as we show here, is dynamically enhanced by the quantum Zeno effect. Decoherence is also probed through a Loschmidt echo experiment, where the time reversal is implemented on the double-quantum Hamiltonian, I_{i,+}I_{j,+} + I_{i,-}I_{j,-}. We contrast the decoherence of adamantane, a standard 3d system, with that of HAp. While the first shows an abrupt Fermi-type decay, HAp presents a smooth exponential law.Comment: 8 pages, 6 figure

    A study of boiling water flow regimes at low pressures

    Get PDF
    "A comprehensive experimental program to examine flow regimes at pressures below 100 psia for boiling of water in tubes was carried out. An electrical probe, which measures the resistance of the fluid between the centerline of the flow and the tube wall, was used to identify the various flow regimes. This probe proved to be an ideal detection device, because of its simplicity, reproducibility, and accurate representation of the flow pattern within the heated test section. The major flow regimes observed were bubbly, slug and annular flow. Under certain conditions at high flow rates, a wispy-annular flow patern was observed. The effects of mass velocity (0.2 x 10 - 2.4 x 100 lbm/hr-ft2), inlet temperature (100, 150, 2000F), exit pressure (30, 100 psia), quality (x = -10 - +7 percent), purity (9, 40 PPM NaCl; 1-3 megohm-cm), length (L/D-30, 6Q, 90), diameter 0.094, 0.242 in.), and orientation (vertical and horizontal on the flow regimes were studied. Flow regime maps on coordinates of mass velocity and quality are presented for these conditions. Bubbly and slug flow occurred primarily in the subcooled region, while fully developed annular flow was reached at equilibrium qualities between 2 and 4 percent. The transitions between the different flows were shifted to regions of increased subcooling when velocity, pressure, and heat flux increased, and when inlet temperature decreased. Purity and geometry had little affect on the flow regime boundaries.(cont.) The shifting of the transitions is related to the agglomeration point, which is that point at which the bubbles so coalesce that slug flow is first observed. The agglomeration point depends on the point of incipient boiling, the number of bubbles in the flow, and the number of collisions per bubble. These latter quantities in turn depend on velocity, temperature, pressure, and heat flux. The flow regime information obtained in this study s~hould be of value in correlating and interpreting low pressure heattransfer data. The flow regime data were found to be useful in explaining the effect of inlet temperature on burnout heat flux.Sponsored by the Solid State Sciences Division, Air Force Office of Scientific Research D.S.R

    Model of critical heat flux in subcooled flow boiling

    Get PDF
    The physical phenomenon occurring before and at the critical heat flux (CHF) for subcooled flow boiling has been investigated. The first phase of this study established the basic nature of the flow structure at CHF. A photographic study of the flow in a glass annular test section was accomplished by using microflash lighting and a Polaroid camera. The results showed that the flow structure at CHF for high heat flux (1 x 106 - 5 x 106 Btu/hr-ft2), high subcooling (50-110 *F), at low pressures (less than 100 psia) was slug or froth flow depending on the mass velocity. Nucleation was shown to exist in the superheated liquid film. Pin-holes in the burned-out test sections suggested that the CHF condition was extremely localized. Flow regime studies in tubular and annular geometries, using an electrical resistance probe, provided further evidence of the slug or froth nature of the flow, and also showed that dryout of the superheated liquid film was not responsible for CHF. Since this evidence was contradictory to previously formulated models of CHF,a new model was proposed: Near the CHF condition, nucleation is present in the superheated liquid film near the surface. As a large vapor clot passes over the surface, these nucleating bubbles break the film and cause a stable dry spot which results in an increased local temperature. As the vapor finally passes the site, the dry spot is quenched by the liquid slug, and the temperature drops. At CHF, the volumetric heat generation, slug frequency, and void fraction are such that the temperature rise resulting from the dry spot is greater than the temperature drop during quenching. An unstable situation results where the temperature of this point continues to rise when each vapor clot passes the site until the Leidenfrost temperature is reached, at which point quenching is prevented and destruction is inevitable.(cont.) A new method of measuring surface wall temperatures, in conjunction with high speed (Fastax) 16 mm movies, confirmed the microscopic features of the proposed model. At CHF, the wall temperature cyclically increased with the same frequency as the slug-vapor bubble passage. Destruction finally resulted as the temperature increased beyond the Leidenfrost point. An analytical investigation based on an idealized model demonstrated that the cyclical nature of the temperature increase at CHF could be predicted with appropriate flow pattern inputs. A parametric study using the program indicated that heater thickness and heater material should affect the CHF. It was shown that the proposed model appears to be consistent with parametric trends, i.e. mass velocity, pressure, subcooling, diameter, length, and surface tension. The model indicated that the CHF for thicker walled tubes, keeping all other conditions the same, would increase. CHF tests were conducted which confirmed that thicker walled tubes (0.078 vs. 0.012 in. ) had CHF up to 58 percent higher than thin walled tubes.Sponsored by the Solid State Sciences Division, Air Force Office of Scientific Research (OAR) Sponsored by Air Forc

    Dealing with uncertainty: turbulent parameterizations and grid-spacing effects in numerical modelling of deep moist convective processes

    Get PDF
    Abstract. Computer power has grown to the point that very-fine-mesh mesoscale modelling is now possible. Going down through scales is clumsily supposed to reduce uncertainty and to improve the predictive ability of the models. This work provides a contribution to understand how the uncertainty in the numerical weather prediction (NWP) of severe weather events is affected by increasing the model grid resolution and by choosing a parameterization which is able to represent turbulent processes at such finer scales. A deep moist convective scenario, a supercell, in a simplified atmospheric setting is studied by mean of high resolution numerical simulations with COSMO-Model. Different turbulent closures are used and their impacts on the space-time properties of convective fields are discussed. The convective-resolving solutions adopting Large Eddy Simulation (LES) turbulent closure converge with respect to the overall flow field structure when grid spacing is properly reduced. By comparing the rainfall fields produced by the model on larger scales with those at the convergence scales it's possible to size up the uncertainty introduced by the modelling itself on the predicted ground effects in such simplified scenario
    • …
    corecore