13,745 research outputs found

    Determining efficient temperature sets for the simulated tempering method

    Full text link
    In statistical physics, the efficiency of tempering approaches strongly depends on ingredients such as the number of replicas RR, reliable determination of weight factors and the set of used temperatures, TR={T1,T2,…,TR}{\mathcal T}_R = \{T_1, T_2, \ldots, T_R\}. For the simulated tempering (SP) in particular -- useful due to its generality and conceptual simplicity -- the latter aspect (closely related to the actual RR) may be a key issue in problems displaying metastability and trapping in certain regions of the phase space. To determine TR{\mathcal T}_R's leading to accurate thermodynamics estimates and still trying to minimize the simulation computational time, here it is considered a fixed exchange frequency scheme for the ST. From the temperature of interest T1T_1, successive TT's are chosen so that the exchange frequency between any adjacent pair TrT_r and Tr+1T_{r+1} has a same value ff. By varying the ff's and analyzing the TR{\mathcal T}_R's through relatively inexpensive tests (e.g., time decay toward the steady regime), an optimal situation in which the simulations visit much faster and more uniformly the relevant portions of the phase space is determined. As illustrations, the proposal is applied to three lattice models, BEG, Bell-Lavis, and Potts, in the hard case of extreme first-order phase transitions, always giving very good results, even for R=3R=3. Also, comparisons with other protocols (constant entropy and arithmetic progression) to choose the set TR{\mathcal T}_R are undertaken. The fixed exchange frequency method is found to be consistently superior, specially for small RR's. Finally, distinct instances where the prescription could be helpful (in second-order transitions and for the parallel tempering approach) are briefly discussed.Comment: 10 pages, 14 figure

    Influence of disordered porous media in the anomalous properties of a simple water model

    Full text link
    The thermodynamic, dynamic and structural behavior of a water-like system confined in a matrix is analyzed for increasing confining geometries. The liquid is modeled by a two dimensional associating lattice gas model that exhibits density and diffusion anomalies, in similarity to the anomalies present in liquid water. The matrix is a triangular lattice in which fixed obstacles impose restrictions to the occupation of the particles. We show that obstacules shortens all lines, including the phase coexistence, the critical and the anomalous lines. The inclusion of a very dense matrix not only suppress the anomalies but also the liquid-liquid critical point

    q-Deformed quaternions and su(2) instantons

    Full text link
    We have recently introduced the notion of a q-quaternion bialgebra and shown its strict link with the SO_q(4)-covariant quantum Euclidean space R_q^4. Adopting the available differential geometric tools on the latter and the quaternion language we have formulated and found solutions of the (anti)selfduality equation [instantons and multi-instantons] of a would-be deformed su(2) Yang-Mills theory on this quantum space. The solutions depend on some noncommuting parameters, indicating that the moduli space of a complete theory should be a noncommutative manifold. We summarize these results and add an explicit comparison between the two SO_q(4)-covariant differential calculi on R_q^4 and the two 4-dimensional bicovariant differential calculi on the bi- (resp. Hopf) algebras M_q(2),GL_q(2),SU_q(2), showing that they essentially coincide.Comment: Latex file, 18 page

    A high space density of L* Active Galactic Nuclei at z~4 in the COSMOS field

    Get PDF
    Identifying the source population of ionizing radiation, responsible for the reionization of the universe, is currently a hotly debated subject with conflicting results. Studies of faint, high-redshift star-forming galaxies, in most cases, fail to detect enough escaping ionizing radiation to sustain the process. Recently, the capacity of bright quasi-stellar objects to ionize their surrounding medium has been confirmed also for faint active galactic nuclei (AGNs), which were found to display an escaping fraction of ~74% at z~4. Such levels of escaping radiation could sustain the required UV background, given the number density of faint AGNs is adequate. Thus, it is mandatory to accurately measure the luminosity function of faint AGNs (L~L*) in the same redshift range. For this reason we have conducted a spectroscopic survey, using the wide field spectrograph IMACS at the 6.5m Baade Telescope, to determine the nature of our sample of faint AGN candidates in the COSMOS field. This sample was assembled using photometric redshifts, color, and X-ray information. We ended up with 16 spectroscopically confirmed AGNs at 3.6<z<4.2 down to a magnitude of iAB_{AB}=23.0 for an area of 1.73 deg2^{2}. This leads to an AGN space density of ~1.6×10−6Mpc−3\times10^{-6} Mpc^{-3} (corrected) at z~4 for an absolute magnitude of M1450_{1450}=-23.5. This is higher than previous measurements and seems to indicate that AGNs could make a substantial contribution to the ionizing background at z~4. Assuming that AGN physical parameters remain unchanged at higher redshifts and fainter luminosities, these sources could be regarded as the main drivers of cosmic reionization.Comment: 10 pages, 3 figures, accepted for publication by Ap

    The M_BH-M_star relation of obscured AGNs at high redshift

    Full text link
    We report the detection of broad Halpha emission in three X-ray selected obscured AGNs at z=1-2. By exploiting the Halpha width and the intrinsic X-ray luminosity, we estimate their black hole masses, which are in the range 0.1-3x10^9 Msun. By means of multi-band photometric data, we measure the stellar mass of their host galaxy and, therefore, infer their M_BH/M_star ratio. These are the first obscured AGNs at high-z, selected based on their black hole accretion (i.e. on the basis of their X-ray luminosity), that can be located on the M_BH-M_star relation at high-z. All of these obscured high-z AGNs are fully consistent with the local M_BH-M_star relation. This result conflicts with those for other samples of AGNs in the same redshift range, whose M_BH/M_star ratio departs significantly from the value observed in local galaxies. We suggest that the obscured AGNs in our sample are in an advanced evolutionary stage, have already settled onto the local M_BH-M_star relation, and whose nuclear activity has been temporarily revived by recent galaxy interactions.Comment: 4 pages, 2 figures, accepted for publication in A&A Letters, slightly revised discussion on SMG

    Unveiling obscured accretion in the Chandra Deep Field South

    Full text link
    A large population of heavily obscured, Compton Thick AGNs is predicted by models of galaxy formation, models of Cosmic X-ray Background and by the ``relic'' super-massive black-hole mass function measured from local bulges. However, so far only a handful of Compton thick AGNs have been possibly detected using even the deepest Chandra and XMM surveys. Compton-thick AGNs can be recovered thanks to the reprocessing of the AGN UV emission in the infrared by selecting sources with AGN luminosity's in the mid-infrared and faint near-infrared and optical emission. To this purpose, we make use of deep HST, VLT, Spitzer and Chandra data on the Chandra Deep Field South to constrain the number of Compton thick AGN in this field. We show that sources with high 24μ\mum to optical flux ratios and red colors form a distinct source population, and that their infrared luminosity is dominated by AGN emission. Analysis of the X-ray properties of these extreme sources shows that most of them (80±15\pm15%) are indeed likely to be highly obscured, Compton thick AGNs. The number of infrared selected, Compton thick AGNs with 5.8μ\mum luminosity higher than 1044.210^{44.2} erg s−1^{-1} turns out to be similar to that of X-ray selected, unobscured and moderately obscured AGNs with 2-10 keV luminosity higher than 104310^{43} erg s−1^{-1} in the redshift bin 1.2-2.6. This ``factor of 2'' source population is exactly what it is needed to solve the discrepancies between model predictions and X-ray AGN selection.Comment: Revised version, to be published by The Astrophysical Journa
    • …
    corecore