13 research outputs found

    Reduced selenium concentrations and glutathione peroxidase activity in preeclamptic pregnancies

    Get PDF
    Preeclampsia is a pregnancy-specific condition affecting 2-7% of women and a leading cause of perinatal and maternal morbidity and mortality. Preeclampsia may also predispose the fetus to increased risks of adult cardiovascular disease. Selenium, acting through the selenoprotein glutathione peroxidases, has critical roles in regulating antioxidant status. Recent reports implicate poor maternal selenium status as a nutritional factor predisposing the mother to preeclampsia but the fetus and placenta have not been studied in tandem. Measurement of selenium concentrations, expression and activity levels of glutathione peroxidase and markers of oxidative stress were performed on maternal and umbilical venous blood samples or the placenta from 27 normal pregnant, 25 preeclamptic and 22 healthy age-matched non-pregnant women. The results of this study revealed highly significant reductions in serum selenium concentrations and plasma glutathione peroxidase activity in pregnancy per se compared to non-pregnant controls. Moreover, these levels were further decreased in the preeclamptic mothers and babies compared to normal pregnancies. Umbilical venous selenium was particularly low (42.1±11.8 and 29.0 ± 9.9 mug/L; mean ±s.d.; P<0.05). Both mother and baby had significantly increased levels of markers for oxidative stress in the preeclamptic group. The placental glutathione peroxidase activity and immunohistochemical staining were also reduced in the preeclampsia placentae. Oxidative stress associated with preeclampsia may be a consequence of reduced antioxidant defence pathways specifically involving glutathione peroxidases, perhaps linked to reduced selenium availability. Reduced glutathione peroxidases could be associated with increased generation of toxic lipid peroxides contributing to the endothelial dysfunction and hypertension of preeclampsia

    Expression of voltage-dependent potassium channels in first trimester human placentae

    Get PDF
    Potassium channel α-subunits encoded by KCNQ1-5 genes form voltage-dependent channels (Kv7), modulated by KCNE1-5 encoded accessory proteins. The aim was to determine KCNQ and KCNE mRNA expression and assess protein expression/localisation of the KCNQ3 and KCNE5 isoforms in first trimester placental tissue. Placentae were obtained from women undergoing elective surgical termination of pregnancy (TOP) at 10 weeks’ (mid TOP) gestations. KCNQ1-5 expression was unchanged during the first trimester. KCNE5 expression increased in mid TOP vs. early TOP samples (P=0.022). This novel study reports mRNA and protein expression of Kv7 channels in first trimester placentae

    Effect of oxygen on the expression of renin-angiotensin system components in a human trophoblast cell line

    Get PDF
    During the first trimester, normal placental development occurs in a low oxygen environment that is known to stimulate angiogenesis via upregulation of vascular endothelial growth factor (VEGF). Expression of the placental renin-angiotensin system (RAS) is highest in early pregnancy. While the RAS and oxygen both stimulate angiogenesis, how they interact within the placenta is unknown. We postulated that low oxygen increases expression of the proangiogenic RAS pathway and that this is associated with increased VEGF in a first trimester human trophoblast cell line (HTR-8/SVneo). HTR-8/SVneo cells were cultured in one of three oxygen tensions (1%, 5% and 20%). RAS and VEGF mRNA expression were determined by qPCR. Prorenin, angiotensin converting enzyme (ACE) and VEGF protein levels in the supernatant, as well as prorenin and ACE in cell lysates, were measured using ELISAs. Low oxygen significantly increased the expression of both angiotensin II type 1 receptor (AGTR1) and VEGF (both P < 0.05). There was a positive correlation between AGTR1 and VEGF expression at low oxygen (r = 0.64, P < 0.005). Corresponding increases in VEGF protein were observed with low oxygen (P < 0.05). Despite no change in ACE1 mRNA expression, ACE levels in the supernatant increased with low oxygen (1% and 5%, P < 0.05). Expression of other RAS components did not change. Low oxygen increased AGTR1 and VEGF expression, as well as ACE and VEGF protein levels, suggesting that the proangiogenic RAS pathway is activated. This highlights a potential role for the placental RAS in mediating the proangiogenic effects of low oxygen in placental development

    A redox switch in angiotensinogen modulates angiotensin release.

    Get PDF
    Blood pressure is critically controlled by angiotensins, which are vasopressor peptides specifically released by the enzyme renin from the tail of angiotensinogen-a non-inhibitory member of the serpin family of protease inhibitors. Although angiotensinogen has long been regarded as a passive substrate, the crystal structures solved here to 2.1 Å resolution show that the angiotensin cleavage site is inaccessibly buried in its amino-terminal tail. The conformational rearrangement that makes this site accessible for proteolysis is revealed in our 4.4 Å structure of the complex of human angiotensinogen with renin. The co-ordinated changes involved are seen to be critically linked by a conserved but labile disulphide bridge. Here we show that the reduced unbridged form of angiotensinogen is present in the circulation in a near 40:60 ratio with the oxidized sulphydryl-bridged form, which preferentially interacts with receptor-bound renin. We propose that this redox-responsive transition of angiotensinogen to a form that will more effectively release angiotensin at a cellular level contributes to the modulation of blood pressure. Specifically, we demonstrate the oxidative switch of angiotensinogen to its more active sulphydryl-bridged form in the maternal circulation in pre-eclampsia-the hypertensive crisis of pregnancy that threatens the health and survival of both mother and child

    A core outcome set for pre‐eclampsia research: an international consensus development study

    Get PDF
    Objective To develop a core outcome set for pre‐eclampsia. Design Consensus development study. Setting International. Population Two hundred and eight‐one healthcare professionals, 41 researchers and 110 patients, representing 56 countries, participated. Methods Modified Delphi method and Modified Nominal Group Technique. Results A long‐list of 116 potential core outcomes was developed by combining the outcomes reported in 79 pre‐eclampsia trials with those derived from thematic analysis of 30 in‐depth interviews of women with lived experience of pre‐eclampsia. Forty‐seven consensus outcomes were identified from the Delphi process following which 14 maternal and eight offspring core outcomes were agreed at the consensus development meeting. Maternal core outcomes: death, eclampsia, stroke, cortical blindness, retinal detachment, pulmonary oedema, acute kidney injury, liver haematoma or rupture, abruption, postpartum haemorrhage, raised liver enzymes, low platelets, admission to intensive care required, and intubation and ventilation. Offspring core outcomes: stillbirth, gestational age at delivery, birthweight, small‐for‐gestational‐age, neonatal mortality, seizures, admission to neonatal unit required and respiratory support. Conclusions The core outcome set for pre‐eclampsia should underpin future randomised trials and systematic reviews. Such implementation should ensure that future research holds the necessary reach and relevance to inform clinical practice, enhance women's care and improve the outcomes of pregnant women and their babies
    corecore