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Abstract 23 

Potassium channel α-subunits encoded by KCNQ1-5 genes form voltage-dependent channels 24 

(Kv7), modulated by KCNE1-5 encoded accessory proteins. The aim was to determine KCNQ 25 

and KCNE mRNA expression and assess protein expression/localisation of the KCNQ3 and 26 

KCNE5 isoforms in first trimester placental tissue. Placentae were obtained from women 27 

undergoing elective surgical termination of pregnancy (TOP) at <10 weeks’ (early TOP) and >10 28 

weeks’ (mid TOP) gestations. KCNQ1-5 expression was unchanged during the first trimester. 29 

KCNE5 expression increased in mid TOP vs. early TOP samples (P=0.022). This novel study 30 

reports mRNA and protein expression of Kv7 channels in first trimester placentae.  31 

 32 

33 
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Introduction 34 

Potassium (K+) channel expression is essential for normal physiological functions of endothelial 35 

and smooth muscle cells in a variety of vascular beds [1]. Members of the Kv7 voltage-gated 36 

potassium channel subfamily Kv7.1-7.5 are encoded by KCNQ1-5 genes; the KCNQ-encoded α-37 

subunits can form channel complexes with KCNE-encoded β-subunits (KCNE1-5). Alterations 38 

in KV7 channel expression and their activation properties affect cell function, cell proliferation 39 

and differentiation [2].  40 

 41 

Knowledge of KV channels in the feto-placental circulation is limited [3, 4]. The presence of 42 

functional KV7 channels in human chorionic plate arteries [5], suggests a role in control of 43 

vascular tone.  Perfusion studies in placental allantochorial blood vessels incubated with K+ 44 

channel blockers, exhibit responses to  altered oxygenation, support this further [6-9].  45 

 46 

We have previously reported raised Kv7 mRNA and protein expression in placental tissue from 47 

pre-eclamptic women compared to normotensive controls near term [3]. The reason for this 48 

difference is unknown; however these channels may be involved in early placentation, which is 49 

disrupted in pre-eclampsia. The aims of this study were to establish placental KCNQ/KCNE 50 

mRNA expression profiles in early pregnancy and to compare with previous observations from 51 

normotensive and pre-eclamptic women. 52 

 53 

 54 

 55 

 56 
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Materials and Methods 57 

After local Ethical committee approval (Wandsworth Local Research Ethics Committee) and 58 

with appropriate informed consent, placental chorionic villous tissue, was obtained from women 59 

undergoing elective surgical TOP at St. George’s Hospital, London during the early 1st trimester 60 

(early-TOP; <10 weeks’, ([mean ± SD] 8.8 ± 0.9 weeks); n = 6) and late 1st trimester (mid-TOP, 61 

gestational age >10 weeks’ (12.9 ± 0.9 weeks); n = 7). Samples were divided and either placed in 62 

RNAlater (Qiagen, UK), stored at -80oC or fixed in formalin and wax embedded.  63 

We compared the early pregnancy observations with data previously obtained using identical 64 

methodology, from placental tissue collected at delivery from 24 women with normotensive 65 

pregnancy (40.1 ± 1.2 weeks) and 22 women with pre-eclampsia (36.8 ± 3.6 weeks) [3].  66 

Total RNA extraction, reverse transcription and real-time PCR were conducted as previously 67 

described [3]. Immunohistochemical staining was performed using goat polyclonal antibodies 68 

(KCNQ3 and KCNE5 (4 µg/ml for both), as previously described [3]. Goat IgG was used as a 69 

negative control. All slides were assessed by the same observer (HDM) and quantified using the 70 

Positive Pixel Algorithm of Aperio ImageScope software [3, 10].  71 

 72 

 73 

 74 

 75 

 76 

 77 

 78 
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Results 79 

Expression of mRNA of KCNQ and KCNE genes was observed in first trimester tissues (Table 80 

1). KNCQ4 and KCNQ5 were low or undetectable, whereas KCNQ3 and KCNQ1 showed the 81 

greatest expression. KCNE1, KCNE2 and KCNE4 expression was low in all TOP samples; 82 

KCNE5 was highly expressed isoform in mid-TOP and significantly greater than in early-TOP 83 

(P=0.022; Table 1).  84 

 85 

High protein expression for both KCNQ3 and KCNE5 was observed, with staining being 86 

localised predominantly to the syncytiotrophoblast, cytotrophoblast and mesenchyme (Figure 1). 87 

No significant differences were observed between early and mid-TOP. 88 

 89 

Lower mRNA expression of KCNQ2, KCNQ4, KCNQ5 and KCNE1 was observed in the TOP 90 

samples compared to the term placentae (Table 1). KCNQ3 and KCNE5 mRNA expression was 91 

significantly decreased in both early and mid-TOP and normotensive controls compared to pre-92 

eclamptic placentae (Table 1).   93 

 94 

Positive immunostaining for both KCNQ3 and KCNE5 was significantly lower in the 95 

normotensive and pre-eclamptic compared to both the early- and mid-TOP placentae (Table 1).  96 

 97 

98 
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Discussion 99 

This study presents novel data concerning placental KCNQ/KCNE mRNA expression profiles 100 

early in pregnancy. KCNQ3 and KNCE5 were the predominant isoforms, localised to 101 

syncytiotrophoblast and mesenchyme. This is similar to the profile in third trimester 102 

normotensive and pre-eclamptic placentae [3].  103 

 104 

The only KCNQ isoforms to be significantly expressed in early pregnancy were KCNQ1 and 105 

KCNQ3. Both are known to be important for steroid production and inhibition of cell 106 

proliferation, essential factors in placentation [11-15]. KCNE expression was low in all early 107 

pregnancy, with the exception of KCNE5 in late-TOP placenta. In other studies, KCNE5 mRNA 108 

expression is markedly reduced in human 2nd trimester trophoblast cells cultured under hypoxic 109 

conditions [16] and oxygen sensitive K+ channels, including Kv channels, may be important for 110 

the detection and response to a oxygenation stimulus [7, 17] .   111 

 112 

KCNQ3 and KCNE5 protein expression in early pregnancy was particularly high in the 113 

cytotrophoblast and syncytiotrophoblast.  The presence of these proteins in the mesenchyme, the 114 

site of angiogenesis [18, 19] during this critical window of feto-placental vascular development, 115 

suggests a possible role for these proteins in vessel remodelling. Comparison with our third 116 

trimester normotensive and pre-eclamptic data indicate that KCNQ3 and KCNE5 proteins show 117 

similar localisation throughout pregnancy. KCNQ3 and KCNE5 expression was lower in tissues 118 

taken at delivery, but still raised in tissue from pre-eclampsia compared to normotensive 119 

controls. This lower expression, at term, could be due to changes in placental structure as 120 

pregnancy progresses, where reticulum cells and fibroblasts are the major cell types [20]. 121 



7 

 

Contrasting data between mRNA and protein may be due to mRNA being less stable than protein 122 

and since such high expression of protein was observed in TOP samples, subtle differences may 123 

not be detected.  124 

 125 

We had access to a limited number of samples at early gestations and unavoidably, the use of 126 

such samples precludes knowing whether these pregnancies may have developed pre-eclampsia. 127 

Nevertheless, taken together with our previous work on third trimester placentae, we have 128 

provided novel data suggesting a potential role for KV7 channels in early placentation. Future 129 

work is needed to characterise the functional impact of KCNQ3 and KCNE5 co-expression both 130 

in the development of the early pregnancy placenta and in pre-eclampsia.  131 

 132 
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Figure Legends 206 

Figure 1: A) KCNQ3 B) KCNE5 immunostaining in 1) early-TOP, 2) mid-TOP and 3) IgG 207 

negative controls. In photomicrographs, positive cells appear brown; magnification x400. High 208 

protein expression and was localised mainly to the syncytiotrophoblast (red arrows), but was also 209 

evident in the mesenchyme (blue arrows). In graphs, data are presented as median [IQR] 210 

positivity; scale bar = 100 µm.  211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 
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Table 1: KCNQ and KCNE mRNA and protein expression isoform placental. 229 

mRNA expression 

(normalised 

GAPDH, copy 

number) x100# 

Early TOP 

(n = 6) 

Mid TOP 

(n = 7) 

Normotensive 

Control 

(n = 24) 

Pre-eclampsia               

(n = 22) 

KCNQ1 
0.4 

[0.3, 0.5] 

0.3 

[0.3, 0.5] 

3.54 

[2.0, 10.4] 

5.6 

[2.0, 11.0] 

KCNQ2 
0.2 

[0.1, 0.4]e 

0b 

 

0.7 

[0.2, 1.6] 

1 

[0.3, 2] 

KCNQ3 
0.3 

[0.2, 0.4]e 

0.4 

[0.2, 0.8]f 

2.3 

 [0.8, 6.8]c 

46,967 

[26,457, 10,2570] 

KCNQ4 
0 

[0, 0.03]a 

0 

 

0.4 

[0.2, 0.7] 

0.2 

[0.1, 0.6] 

KCNQ5 
0.01 

[0, 0.02]a 

0.04 

[0, 0.08]b 

8.3 

[2.9, 20.3]c 

2.2 

[0.6, 7.2] 

KCNE1 
0.02 

[0, 0.02]a 

0.04 

[0, 0.08]b 

1.5 

[1, 4.3] 

0.8 

[0.5, 2.2] 

KCNE2 
0.07 

[0.03, 0.08] 

0.09 

[0.06, 0.1] 
0.04 [0, 0.08] 0.02 [0, 0.1] 

KCNE3 
0.9 

[0.6, 1.0] 

0.7 

[0.6, 1] 

1.5 

[0.8, 3.2] 

1.2 

[0.7, 3] 

KCNE4 
0.2 

[0.2, 0.5] 

0.2 

[0.2, 0.3] 

0.2 

[0.1, 0.5] 

0.3 

[0.2, 0.6] 

KCNE5 
0.6 

[0.4, 1]a 

2 

[1, 3]g 

16 

[9, 29]c 

194 

[91, 338] 

Positive 

immunostaining 

(arbitrary units)# 

Early TOP               

(n = 7) 

Mid TOP         

 (n = 5) 

Normotensive 

Control             

 (n = 6) 

Pre-eclampsia  

(n = 6) 

KCNQ3 
0.97  

[0.96, 0.99]a 

0.99  

[0.96, 0.99]b 

0.18  

[0.1, 0.2]c 

0.31  

[0.2, 0.35] 

KCNE5 
0.98  

[0.94, 0.99]a 

0.99  

[0.98, 0.99]b 

0.13  

[0.06, 0.16]c 

0.35  

[0.28, 0.43] 

     

 230 

a: P<0.05 early TOP vs. normotensive controls and pre-eclampsia; b: P<0.05 mid TOP vs. 231 

normotensive controls and pre-eclampsia; c: P<0.05 normotensive controls vs. pre-eclampsia; d: 232 

P<0.05 early TOP vs. normotensive controls; e: P<0.05 early TOP vs. pre-eclampsia; f: P<0.05 233 

mid TOP vs. normotensive controls; g: P<0.05 mid TOP vs. pre-eclampsia. Data presented as 234 

median [IQR]. #Normotensive control and pre-eclampsia data previously published [3]. 235 


