15 research outputs found

    Development of fad7-1 single mutant Arabidopsis thaliana plants that are resistant to aphids

    Get PDF
    Aphids are a group of sap-feeding insects that attack most of the world’s crops. The loss of function of fatty acid desaturase7 (FAD7) in Solanum lycopersicum (tomato plant) induces aphid resistance that is dependent upon the accumulation of plant defense hormones such as salicylic acid (SA). Tomato lacks most of the genetic resources found in the model plant Arabidopsis (Arabidopsis thaliana). There is an analogous fad7-1 line of Arabidopsis; however, the line has a background mutation, the glabra-1 (gl1), that causes the absence of trichomes (small hairs), which are essential to plant defense. In order to study aphid resistance, a single mutant line of fad7-1 mutants were developed using cross breeding between the fad7-1/gl1 mutant and wild-type plants. Homozygous fad7-1 mutants were then identified using the Kasajima DNA extraction method, followed by the use of single nucleotide polymorphism-polymerase chain reaction (SNP-PCR) primers using allele-specific PCR. A phenotypic screening was then performed to screen out the plants with the glabra-1 mutation using the presence or absence of trichomes. Two single Arabidopsis fad7-1 mutant lines were identified, and subsequently verified using a bioassay to be aphid resistant relative to other genotypes as seen in tomato

    Editorial: Lipid metabolism and membrane structure in plant biotic interactions

    Get PDF
    Article discusses how Lipid bilayers represent the interface between cells (or organelles) and their environment. Authors claim that this special topic brings together new reports on several of these lipid classes to shed light on the impacts of plant lipid metabolism and membrane organization on plant immunity

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Phloem Loading in the Tulip Tree. Mechanisms and Evolutionary Implications

    No full text

    Variability in the Response of Macrosiphum euphorbiae

    No full text

    A Comparison of the Effects of FATTY ACID DESATURASE 7 and HYDROPEROXIDE LYASE on Plant–Aphid Interactions

    No full text
    The spr2 mutation in tomato (Solanum lycopersicum), which disrupts function of FATTY ACID DESATURASE 7 (FAD7), confers resistance to the potato aphid (Macrosiphum euphorbiae) and modifies the plant&rsquo;s C6 volatile profiles. To investigate whether C6 volatiles play a role in resistance, HYDROPEROXIDE LYASE (HPL), which encodes a critical enzyme in C6 volatile synthesis, was silenced in wild-type tomato plants and spr2 mutants. Silencing HPL in wild-type tomato increased potato aphid host preference and reproduction on 5-week old plants but had no influence on 3-week old plants. The spr2 mutation, in contrast, conferred strong aphid resistance at both 3 and 5 weeks, and silencing HPL in spr2 did not compromise this aphid resistance. Moreover, a mutation in the FAD7 gene in Arabidopsis thaliana also conferred resistance to the green peach aphid (Myzus persicae) in a genetic background that carries a null mutation in HPL. These results indicate that HPL contributes to certain forms of aphid resistance in tomato, but that the effects of FAD7 on aphids in tomato and Arabidopsis are distinct from and independent of HPL

    Medicago truncatula Mutants Demonstrate the Role of Plant Calcium Oxalate Crystals as an Effective Defense against Chewing Insects

    No full text
    Calcium oxalate is the most abundant insoluble mineral found in plants and its crystals have been reported in more than 200 plant families. In the barrel medic Medicago truncatula Gaertn., these crystals accumulate predominantly in a sheath surrounding secondary veins of leaves. Mutants of M. truncatula with decreased levels of calcium oxalate crystals were used to assess the defensive role of this mineral against insects. Caterpillar larvae of the beet armyworm Spodoptera exigua Hübner show a clear feeding preference for tissue from calcium oxalate-defective (cod) mutant lines cod5 and cod6 in choice test comparisons with wild-type M. truncatula. Compared to their performance on mutant lines, larvae feeding on wild-type plants with abundant calcium oxalate crystals suffer significantly reduced growth and increased mortality. Induction of wound-responsive genes appears to be normal in cod5 and cod6, indicating that these lines are not deficient in induced insect defenses. Electron micrographs of insect mouthparts indicate that the prismatic crystals in M. truncatula leaves act as physical abrasives during feeding. Food utilization measurements show that, after consumption, calcium oxalate also interferes with the conversion of plant material into insect biomass during digestion. In contrast to their detrimental effects on a chewing insect, calcium oxalate crystals do not negatively affect the performance of the pea aphid Acyrthosiphon pisum Harris, a sap-feeding insect with piercing-sucking mouthparts. The results confirm a long-held hypothesis for the defensive function of these crystals and point to the potential value of genes controlling crystal formation and localization in crop plants
    corecore