259 research outputs found

    Imaging of a fluid injection process using geophysical data - A didactic example

    Get PDF
    In many subsurface industrial applications, fluids are injected into or withdrawn from a geologic formation. It is of practical interest to quantify precisely where, when, and by how much the injected fluid alters the state of the subsurface. Routine geophysical monitoring of such processes attempts to image the way that geophysical properties, such as seismic velocities or electrical conductivity, change through time and space and to then make qualitative inferences as to where the injected fluid has migrated. The more rigorous formulation of the time-lapse geophysical inverse problem forecasts how the subsurface evolves during the course of a fluid-injection application. Using time-lapse geophysical signals as the data to be matched, the model unknowns to be estimated are the multiphysics forward-modeling parameters controlling the fluid-injection process. Properly reproducing the geophysical signature of the flow process, subsequent simulations can predict the fluid migration and alteration in the subsurface. The dynamic nature of fluid-injection processes renders imaging problems more complex than conventional geophysical imaging for static targets. This work intents to clarify the related hydrogeophysical parameter estimation concepts

    Advanced Vadose Zone Simulations Using TOUGH

    Get PDF
    The vadose zone can be characterized as a complex subsurface system in which intricate physical and biogeochemical processes occur in response to a variety of natural forcings and human activities. This makes it difficult to describe, understand, and predict the behavior of this specific subsurface system. The TOUGH nonisothermal multiphase flow simulators are well-suited to perform advanced vadose zone studies. The conceptual models underlying the TOUGH simulators are capable of representing features specific to the vadose zone, and of addressing a variety of coupled phenomena. Moreover, the simulators are integrated into software tools that enable advanced data analysis, optimization, and system-level modeling. We discuss fundamental and computational challenges in simulating vadose zone processes, review recent advances in modeling such systems, and demonstrate some capabilities of the TOUGH suite of codes using illustrative examples

    P-mode leakage and Lyman-α intensity

    Get PDF
    We present an observational test of the hypothesis that leaking p modes heat the solar chromosphere. The amplitude of the leaking p modes in magneto-acoustic portals is determined using MOTH and MDI data. We simulate the propagation of these modes into the chromosphere to determine the height where the wave energy is dissipated by shock waves. A statistical approach is then used to check if this heating process could account for the observed variability of the intensity in the Lyman-α emissio
    • …
    corecore