10 research outputs found

    Variation in albedo and other vegetation characteristics in non-forested northern ecosystems: the role of lichens and mosses

    Get PDF
    Vegetation has a profound impact on climate through complex interactions and feedback loops, where especially regulation of albedo, the ratio of reflected to incoming solar radiation, is important at high latitudes. How vegetation albedo varies along environmental gradients in tundra ecosystems is still not well understood, particularly for ecosystems dominated by nonvascular vegetation. We studied broadband shortwave albedo of open boreal, arctic, and alpine ecosystems over a 2000 km long latitudinal gradient (60◦ N–79◦ N) and contrasted this against species composition, vegetation greenness (normalised difference vegetation index—NDVI), momentary ecosystem CO2 fluxes and reindeer (Rangifer tarandus) grazing pressure. High cover of pale terricolous fruticose lichens was the single most important predictor for vegetation albedo, which had a maximum value of 0.389 under clear sky conditions and solar zenith angle 60◦. To our knowledge, this is the highest broadband albedo recorded for a vegetated surface. NDVI was negatively correlated to lichen biomass (rs = −0.56), and albedo (rs = −0.19). Gross primary production and ecosystem respiration varied considerably less between plots and vegetation types than albedo. While it is well-known that Rangifer affects climate-relevant aboveground biomass, we here show that its regulation of surface albedo in northern ecosystems may also be of high importance for land-atmosphere interactions. The data presented here thus advocate for an increased understanding of the important and complex role of herbivores and lichen cover in climate-vegetation interactions.publishedVersio

    Head in the clouds, feet on the ground: how transdisciplinary learning can foster transformative change—insights from a summer school

    Get PDF
    There is a pressing need for transformative change, with a vision of long-term human well-being within planetary boundaries. The lack of progress—despite increasing awareness and action—illustrates how challenging it is to foster change in our complex global society. Education and learning are needed to enable change. Transdisciplinary learning, which meaningfully integrates diverse knowledge and perspectives, contributes to developing an integrative understanding—a necessity for tackling complex challenges. We explore how transdisciplinary learning for early-career researchers can foster transformative change and lead to increased biodiversity conservation. This paper focuses on a case study of the authors’ shared experiences during the 2021 Alternet Summer School, which focused on transformative change for biodiversity conservation and human well-being. In this introspective research, we gained insights through an online survey for participants and organizers of the summer school (n = 27). Using qualitative content analysis, we identify seven crucial elements of transdisciplinary learning which can lead to transformative change on (a) a personal level, as the learning process shifts values and helps researchers identify their roles; (b) a research level, by rethinking science and providing tools for transdisciplinary approaches, and (c) a societal level, by moving from the individual to the collective and constructing a shared vision for a sustainable future. Participants highlighted how changes on all these levels could benefit biodiversity conservation. These insights point to the benefit of transdisciplinary learning opportunities that empower young researchers to take up their part in fostering transformative change

    Head in the clouds, feet on the ground: how transdisciplinary learning can foster transformative change—insights from a summer school

    Get PDF
    There is a pressing need for transformative change, with a vision of long-term human well-being within planetary boundaries. The lack of progress—despite increasing awareness and action—illustrates how challenging it is to foster change in our complex global society. Education and learning are needed to enable change. Transdisciplinary learning, which meaningfully integrates diverse knowledge and perspectives, contributes to developing an integrative understanding—a necessity for tackling complex challenges. We explore how transdisciplinary learning for early-career researchers can foster transformative change and lead to increased biodiversity conservation. This paper focuses on a case study of the authors’ shared experiences during the 2021 Alternet Summer School, which focused on transformative change for biodiversity conservation and human well-being. In this introspective research, we gained insights through an online survey for participants and organizers of the summer school (n = 27). Using qualitative content analysis, we identify seven crucial elements of transdisciplinary learning which can lead to transformative change on (a) a personal level, as the learning process shifts values and helps researchers identify their roles; (b) a research level, by rethinking science and providing tools for transdisciplinary approaches, and (c) a societal level, by moving from the individual to the collective and constructing a shared vision for a sustainable future. Participants highlighted how changes on all these levels could benefit biodiversity conservation. These insights point to the benefit of transdisciplinary learning opportunities that empower young researchers to take up their part in fostering transformative change.publishedVersio

    Head in the clouds, feet on the ground: how transdisciplinary learning can foster transformative change—insights from a summer school

    Get PDF
    There is a pressing need for transformative change, with a vision of long-term human well-being within planetary boundaries. The lack of progress—despite increasing awareness and action—illustrates how challenging it is to foster change in our complex global society. Education and learning are needed to enable change. Transdisciplinary learning, which meaningfully integrates diverse knowledge and perspectives, contributes to developing an integrative understanding—a necessity for tackling complex challenges. We explore how transdisciplinary learning for early-career researchers can foster transformative change and lead to increased biodiversity conservation. This paper focuses on a case study of the authors’ shared experiences during the 2021 Alternet Summer School, which focused on transformative change for biodiversity conservation and human well-being. In this introspective research, we gained insights through an online survey for participants and organizers of the summer school (n = 27). Using qualitative content analysis, we identify seven crucial elements of transdisciplinary learning which can lead to transformative change on (a) a personal level, as the learning process shifts values and helps researchers identify their roles; (b) a research level, by rethinking science and providing tools for transdisciplinary approaches, and (c) a societal level, by moving from the individual to the collective and constructing a shared vision for a sustainable future. Participants highlighted how changes on all these levels could benefit biodiversity conservation. These insights point to the benefit of transdisciplinary learning opportunities that empower young researchers to take up their part in fostering transformative change

    What explains inconsistencies in field-based ecosystem mapping?

    Get PDF
    Questions: Field-based ecosystem mapping is prone to observer bias, typically resulting in a mismatch between maps made by different mappers, that is, inconsistency. Experimental studies testing the influence of site, mapping scale, and differences in experience level on inconsistency in field-based ecosystem mapping are lacking. Here, we study how inconsistencies in field-based ecosystem maps depend on these factors. Location: IÅ¡koras and Guollemuorsuolu, northeastern Norway, and Landsvik and Lygra, western Norway. Methods: In a balanced experiment, four sites were field-mapped wall-to- wall to scales 1:5000 and 1:20,000 by 12 mappers, representing three experience levels. Thematic inconsistency was calculated by overlay analysis of map pairs from the same site, mapped to the same scale. We tested for significant differences between sites, scales, and experience-level groups. Principal components analysis was used in an analysis of additional map inconsistencies and their relationships with site, scale and differences in experience level and time consumption were analysed with redundancy analysis. Results: On average, thematic inconsistency was 51%. The most important predictor for thematic inconsistency, and for all map inconsistencies, was site. Scale and its interaction with site predicted map inconsistencies, but only the latter were important for thematic inconsistency. The only experience-level group that differed significantly from the mean thematic inconsistency was that of the most experienced mappers, with nine percentage points. Experience had no significant effect on map inconsistency as a whole. Conclusion: Thematic inconsistency was high for all but the dominant thematic units, with potentially adverse consequences for mapping ecosystems that are fragmented or have low coverage. Interactions between site and mapping system properties are considered the main reasons why no relationships between scale and thematic inconsistency were observed. More controlled experiments are needed to quantify the effect of other factors on inconsistency in field-based mapping. classification, experience, field-based mapping, GIS, inter-observer variation, land-cover mapping, landscape metrics, ordination, scale, vegetation mappingpublishedVersio

    Flux of nutrients and mercury from an Arctic seabird colony to the coastal food web

    No full text
    Seabirds bring substantial amounts of nitrogen (N) and phosphorous (P) from sea to their breeding colonies. On Svalbard, previous research has focused on the ornithogenic fluxes from sea to land, but little is known of the effects of seabird colonies on nearby marine environments. External nutrient input has potential to increase primary production during summer, when nutrient availability is the limiting factor. Seabirds can also function as biovectors for transport of contaminants, such as mercury (Hg), from their foraging areas to the colony, but there are uncertainties on how the presence of these colonies could affect contaminant accumulation in affected coastal food webs. The objective of this thesis is therefore twofold: (i) characterising the nutrient and Hg flux from a seabird colony, and (ii) investigating the response in a nearby coastal ecosystem. To study these seabird driven fluxes, a mixed colony of Black-legged kittiwakes (Rissa tridactyla) and Brünnich’s guillemots (Uria lomvia) at Alkhornet, west coast of Spitsbergen, was visited on five occasions from June to September 2018. Water was collected for chemical analysis from three streams influenced by the seabird colony and in three control streams, with little seabird presence. In the adjacent coastal ecosystem, stable carbon and nitrogen isotope analysis (δ15N and δ13C) was used to assess the ornithogenic nutrient uptake by primary producers (Acrosiphonia sp.) and its propagation to higher trophic levels (amphipods). Concentrations of methyl-mercury (MeHg) were also determined in a primary consumer (amphipods). The seabird influenced streams had much higher (5-100 fold) concentrations of organic carbon and dissolved N and P than control streams. Aqueous Hg was positively related to organic matter in colony-influenced streams, while turbidity was a better predictor for aqueous Hg for control streams. An ornithogenic signal (higher 15N) was found in all biota collected from the seabird influenced sites. Acrosiphonia close to the colony had lower C:N ratios than specimens collected from control sites, indicating higher N-availability. Low MeHg concentrations were observed in amphipods close to the colony, possibly due to availability of high-quality food, which could lead to high trophic efficiency and therefore lower bioaccumulation of MeHg. In light of ongoing climate change and declining seabird populations, effort should also be put on understanding potential future changes in ornithogenic fluxes from land to sea, and the implications for adjacent coastal ecosystems

    Nutrient fuxes from an Arctic seabird colony to the adjacent coastal marine ecosystem

    No full text
    Seabirds are important vectors for nutrient transfer across ecosystem boundaries. In this seasonal study, we evaluate the impact of an Arctic colony (Alkhornet, Svalbard) of Black-legged Kittiwakes (Rissa tridactyla) and Brünnich’s Guillemots (Uria lomvia) on stream nutrient concentrations and fuxes, as well as utilization by coastal biota. Water samples from seabird-impacted and control streams were collected regularly throughout the melt season (June–September) for nutrient and organic carbon analysis. Stable carbon and nitrogen isotope analysis (δ13C and δ15N) was used to assess whether seabird derived nitrogen (N) could be traced into flamentous stream algae and marine algae as well as consumers (amphipods). Concentrations of nitrate (NO3−) and nitrite (NO2) peaked in July at 9200 µg N L−1 in seabird-impacted streams, 70 times higher than for control streams. Mean concentrations of phosphate (PO4 3−) in seabird-impacted streams were 21.9 µg P L−1, tenfold higher than in controls. Areal fuxes from seabird-impacted study catchments of NO3− + NO2− and PO4 3− had estimated ranges of 400–2100 kg N km−2 and 15–70 kg P km−2, respectively. Higher δ15N was found in all biota collected from seabird-impacted sites, indicating utilization of seabird-derived nitrogen. Acrosiphonia sp. from seabird-impacted sites had higher δ15N values (20–23‰ vs. 3–6‰) and lower C:N ratios (10.9 vs. 14.3) than specimens collected from control sites, indicating reliance on seabird-derived nitrogen sources and potentially higher N-availability at seabird-impacted nearshore sites. Our study demonstrates how marine nutrients brought onshore by seabirds also can return to the ocean and be utilized by nearshore primary producers and consumers. Cross-ecosystem fuxes · Runof · Svalbard · Seabird guano · Rissa tridactyla · Uria lomvia · Macroalga

    Nutrient fuxes from an Arctic seabird colony to the adjacent coastal marine ecosystem

    Get PDF
    Seabirds are important vectors for nutrient transfer across ecosystem boundaries. In this seasonal study, we evaluate the impact of an Arctic colony (Alkhornet, Svalbard) of Black-legged Kittiwakes (Rissa tridactyla) and Brünnich’s Guillemots (Uria lomvia) on stream nutrient concentrations and fuxes, as well as utilization by coastal biota. Water samples from seabird-impacted and control streams were collected regularly throughout the melt season (June–September) for nutrient and organic carbon analysis. Stable carbon and nitrogen isotope analysis (δ13C and δ15N) was used to assess whether seabird derived nitrogen (N) could be traced into flamentous stream algae and marine algae as well as consumers (amphipods). Concentrations of nitrate (NO3−) and nitrite (NO2) peaked in July at 9200 µg N L−1 in seabird-impacted streams, 70 times higher than for control streams. Mean concentrations of phosphate (PO4 3−) in seabird-impacted streams were 21.9 µg P L−1, tenfold higher than in controls. Areal fuxes from seabird-impacted study catchments of NO3− + NO2− and PO4 3− had estimated ranges of 400–2100 kg N km−2 and 15–70 kg P km−2, respectively. Higher δ15N was found in all biota collected from seabird-impacted sites, indicating utilization of seabird-derived nitrogen. Acrosiphonia sp. from seabird-impacted sites had higher δ15N values (20–23‰ vs. 3–6‰) and lower C:N ratios (10.9 vs. 14.3) than specimens collected from control sites, indicating reliance on seabird-derived nitrogen sources and potentially higher N-availability at seabird-impacted nearshore sites. Our study demonstrates how marine nutrients brought onshore by seabirds also can return to the ocean and be utilized by nearshore primary producers and consumers. Cross-ecosystem fuxes · Runof · Svalbard · Seabird guano · Rissa tridactyla · Uria lomvia · Macroalga

    Feasibility of active handheld NDVI sensors for monitoring of lichen ground cover

    Get PDF
    Vegetation indices are corner stones in vegetation monitoring. However, previous field studies on lichens and NDVI have been based on passive sensors. Active handheld sensors, with their own light sources, enables high- precision monitoring under variable ambient conditions. We investigated the use of handheld sensor NDVI for monitoring pale lichen cover across three study sites from boreal heathlands to High Arctic tundra (62–79 ◦N), and compared it with Sentinel-2 satellite NDVI. NDVI decreased with increasing cover of pale lichens but the correlation between active and satellite NDVI varied between areas. NDVI values declined with lichen cover and ranged from 0.4–0.18 when lichen cover was above 40%. Active ground measurements of NDVI explained 81% of the variation in the satellite NDVI values in Svalbard (High Arctic), while the relationships were lower (~30% explained variation) in boreal regions (Troms-Finnmark and Røros). We show that active sensors are feasible for extracting information from lichen-dominated vegetation. Lichen Pale lichens Cladonia NDVI Active sensor Remote sensing Monitoring

    An artificial intelligence approach to remotely assess pale lichen biomass

    No full text
    Although generally given little attention in vegetation studies, ground-dwelling (terricolous) lichens are major contributors to overall carbon and nitrogen cycling, albedo, biodiversity and biomass in many high-latitude ecosystems. Changes in biomass of mat-forming pale lichens have the potential to affect vegetation, fauna, climate and human activities including reindeer husbandry. Lichens have a complex spectral signature and terricolous lichens have limited growth height, often growing in mixtures with taller vegetation. This has, so far, prevented the development of remote sensing techniques to accurately assess lichen biomass, which would be a powerful tool in ecosystem and ecological research and rangeland management. We present a Landsat based remote sensing model developed using deep neural networks, trained with 8914 field records of lichen volume collected for >20 years. In contrast to earlier proposed machine learning and regression methods for lichens, our model exploited the ability of neural networks to handle mixed spatial resolution input. We trained candidate models using input of 1 × 1 (30 × 30 m) and 3 × 3 Landsat pixels based on 7 reflective bands and 3 indices, combined with a 10 m spatial resolution digital elevation model. We normalised elevation data locally for each plot to remove the region-specific variation, while maintaining informative local variation in topography. The final model predicted lichen volume in an evaluation set (n = 159) reaching an R2 of 0.57. NDVI and elevation were the most important predictors, followed by the green band. Even with moderate tree cover density, the model was efficient, offering a considerable improvement compared to earlier methods based on specific reflectance. The model was in principle trained on data from Scandinavia, but when applied to sites in North America and Russia, the predictions of the model corresponded well with our visual interpretations of lichen abundance. We also accurately quantified a recent historic (35 years) change in lichen abundance in northern Norway. This new method enables further spatial and temporal studies of variation and changes in lichen biomass related to multiple research questions as well as rangeland management and economic and cultural ecosystem services. Combined with information on changes in drivers such as climate, land use and management, and air pollution, our model can be used to provide accurate estimates of ecosystem changes and to improve vegetation-climate models by including pale lichen
    corecore