10,166 research outputs found
A program to evaluate a control system based on feedback of aerodynamic pressure differentials, part 1
The use of pressure differentials in a flight control system was evaluated. The pressure profile around the test surface was determined using two techniques: (1) windtunnel data (actual); and (2) NASA/Langley Single Element Airfoil Computer Program (theoretical). The system designed to evaluate the concept of using pressure differentials is composed of a sensor drive and power amplifiers, actuator, position potentiometer, and a control surface. The characteristics (both desired and actual) of the system and each individual component were analyzed. The desired characteristics of the system as a whole are given. The flight control system developed, the testing procedures and data reduction methods used, and theoretical frequency response analysis are described
S-Geranylgeranyl-L-glutathione is a ligand for human B cell-confinement receptor P2RY8.
Germinal centres are important sites for antibody diversification and affinity maturation, and are also a common origin of B cell malignancies. Despite being made up of motile cells, germinal centres are tightly confined within B cell follicles. The cues that promote this confinement are incompletely understood. P2RY8 is a Gα13-coupled receptor that mediates the inhibition of migration and regulates the growth of B cells in lymphoid tissues1,2. P2RY8 is frequently mutated in germinal-centre B cell-like diffuse large B cell lymphoma (GCB-DLBCL) and Burkitt lymphoma1,3-6, and the ligand for this receptor has not yet been identified. Here we perform a search for P2RY8 ligands and find P2RY8 bioactivity in bile and in culture supernatants of several mouse and human cell lines. Using a seven-step biochemical fractionation procedure and a drop-out mass spectrometry approach, we show that a previously undescribed biomolecule, S-geranylgeranyl-L-glutathione (GGG), is a potent P2RY8 ligand that is detectable in lymphoid tissues at the nanomolar level. GGG inhibited the chemokine-mediated migration of human germinal-centre B cells and T follicular helper cells, and antagonized the induction of phosphorylated AKT in germinal-centre B cells. We also found that the enzyme gamma-glutamyltransferase-5 (GGT5), which was highly expressed by follicular dendritic cells, metabolized GGG to a form that did not activate the receptor. Overexpression of GGT5 disrupted the ability of P2RY8 to promote B cell confinement to germinal centres, which indicates that GGT5 establishes a GGG gradient in lymphoid tissues. This work defines GGG as an intercellular signalling molecule that is involved in organizing and controlling germinal-centre responses. As the P2RY8 locus is modified in several other types of cancer in addition to GCB-DLBCL and Burkitt lymphoma, we speculate that GGG might have organizing and growth-regulatory roles in multiple human tissues
HMMER web server: interactive sequence similarity searching
HMMER is a software suite for protein sequence similarity searches using probabilistic methods. Previously, HMMER has mainly been available only as a computationally intensive UNIX command-line tool, restricting its use. Recent advances in the software, HMMER3, have resulted in a 100-fold speed gain relative to previous versions. It is now feasible to make efficient profile hidden Markov model (profile HMM) searches via the web. A HMMER web server (http://hmmer.janelia.org) has been designed and implemented such that most protein database searches return within a few seconds. Methods are available for searching either a single protein sequence, multiple protein sequence alignment or profile HMM against a target sequence database, and for searching a protein sequence against Pfam. The web server is designed to cater to a range of different user expertise and accepts batch uploading of multiple queries at once. All search methods are also available as RESTful web services, thereby allowing them to be readily integrated as remotely executed tasks in locally scripted workflows. We have focused on minimizing search times and the ability to rapidly display tabular results, regardless of the number of matches found, developing graphical summaries of the search results to provide quick, intuitive appraisement of them
On recurrence and ergodicity for geodesic flows on noncompact periodic polygonal surfaces
We study the recurrence and ergodicity for the billiard on noncompact
polygonal surfaces with a free, cocompact action of or . In the
-periodic case, we establish criteria for recurrence. In the more difficult
-periodic case, we establish some general results. For a particular
family of -periodic polygonal surfaces, known in the physics literature
as the wind-tree model, assuming certain restrictions of geometric nature, we
obtain the ergodic decomposition of directional billiard dynamics for a dense,
countable set of directions. This is a consequence of our results on the
ergodicity of \ZZ-valued cocycles over irrational rotations.Comment: 48 pages, 12 figure
The Cosmological Constant and Advanced Gravitational Wave Detectors
Interferometric gravitational wave detectors could measure the frequency
sweep of a binary inspiral [characterized by its chirp mass] to high accuracy.
The observed chirp mass is the intrinsic chirp mass of the binary source
multiplied by , where is the redshift of the source. Assuming a
non-zero cosmological constant, we compute the expected redshift distribution
of observed events for an advanced LIGO detector. We find that the redshift
distribution has a robust and sizable dependence on the cosmological constant;
the data from advanced LIGO detectors could provide an independent measurement
of the cosmological constant.Comment: 13 pages plus 5 figure, LaTeX. Revised and final version, to appear
in Phys. Rev.
Modeling the Large Scale Structures of Astrophysical Jets in the Magnetically Dominated Limit
We suggest a new approach that could be used for modeling both the large
scale behavior of astrophysical jets and the magnetically dominated explosions
in astrophysics. We describe a method for modeling the injection of magnetic
fields and their subsequent evolution in a regime where the free energy is
magnetically dominated. The injected magnetic fields, along with their
associated currents, have both poloidal and toroidal components, and they are
not force free. The dynamic expansion driven by the Lorentz force of the
injected fields is studied using 3-dimensional ideal magnetohydrodynamic
simulations. The generic behavior of magnetic field expansion, the interactions
with the background medium, and the dependence on various parameters are
investigated.Comment: Accepted to ApJ, May 10, 2006 issue, 12 figures total (3 color
figures
Topological Entropy of Braids on the Torus
A fast method is presented for computing the topological entropy of braids on
the torus. This work is motivated by the need to analyze large braids when
studying two-dimensional flows via the braiding of a large number of particle
trajectories. Our approach is a generalization of Moussafir's technique for
braids on the sphere. Previous methods for computing topological entropies
include the Bestvina--Handel train-track algorithm and matrix representations
of the braid group. However, the Bestvina--Handel algorithm quickly becomes
computationally intractable for large braid words, and matrix methods give only
lower bounds, which are often poor for large braids. Our method is
computationally fast and appears to give exponential convergence towards the
exact entropy. As an illustration we apply our approach to the braiding of both
periodic and aperiodic trajectories in the sine flow. The efficiency of the
method allows us to explore how much extra information about flow entropy is
encoded in the braid as the number of trajectories becomes large.Comment: 19 pages, 44 figures. SIAM journal styl
The Origin of Black Hole Entropy in String Theory
I review some recent work in which the quantum states of string theory which
are associated with certain black holes have been identified and counted. For
large black holes, the number of states turns out to be precisely the
exponential of the Bekenstein-Hawking entropy. This provides a statistical
origin for black hole thermodynamics in the context of a potential quantum
theory of gravity.Comment: 18 pages (To appear in the proceedings of the Pacific Conference on
Gravitation and Cosmology, Seoul, Korea, February 1-6, 1996.
Binary inspiral, gravitational radiation, and cosmology
Observations of binary inspiral in a single interferometric gravitational
wave detector can be cataloged according to signal-to-noise ratio and
chirp mass . The distribution of events in a catalog composed of
observations with greater than a threshold depends on the
Hubble expansion, deceleration parameter, and cosmological constant, as well as
the distribution of component masses in binary systems and evolutionary
effects. In this paper I find general expressions, valid in any homogeneous and
isotropic cosmological model, for the distribution with and of
cataloged events; I also evaluate these distributions explicitly for relevant
matter-dominated Friedmann-Robertson-Walker models and simple models of the
neutron star mass distribution. In matter dominated Friedmann-Robertson-Walker
cosmological models advanced LIGO detectors will observe binary neutron star
inspiral events with from distances not exceeding approximately
, corresponding to redshifts of (0.26) for
(), at an estimated rate of 1 per week. As the binary system mass
increases so does the distance it can be seen, up to a limit: in a matter
dominated Einstein-deSitter cosmological model with () that limit
is approximately (1.7) for binaries consisting of two
black holes. Cosmological tests based on catalogs of the
kind discussed here depend on the distribution of cataloged events with
and . The distributions found here will play a pivotal role in testing
cosmological models against our own universe and in constructing templates for
the detection of cosmological inspiraling binary neutron stars and black holes.Comment: REVTeX, 38 pages, 9 (encapsulated) postscript figures, uses epsf.st
Directional approach to spatial structure of solutions to the Navier-Stokes equations in the plane
We investigate a steady flow of incompressible fluid in the plane. The motion
is governed by the Navier-Stokes equations with prescribed velocity
at infinity. The main result shows the existence of unique solutions for
arbitrary force, provided sufficient largeness of . Furthermore a
spacial structure of the solution is obtained in comparison with the Oseen
flow. A key element of our new approach is based on a setting which treats the
directino of the flow as \emph{time} direction. The analysis is done in
framework of the Fourier transform taken in one (perpendicular) direction and a
special choice of function spaces which take into account the inhomogeneous
character of the symbol of the Oseen system. From that point of view our
technique can be used as an effective tool in examining spatial asymptotics of
solutions to other systems modeled by elliptic equations
- âŠ