7,786 research outputs found

    Dissociation of CH4 by electron impact: Production of metastable hydrogen and carbon fragments

    Get PDF
    Metastable fragments produced by electron impact excitation of CH4 have been investigated for incident electron energies from threshold to 300 eV. Only metastable hydrogen and carbon atoms were observed. Onset energies for the production of metastable hydrogen atoms were observed at electron impact energies of 22.0 + or - .5 eV, 25.5 + or - .6 eV, 36.7 + or - .6 eV and 66 + or - 3 eV, and at 26.6 + or - .6 eV for the production of metastable carbon atoms. Most of the fragments appear to have been formed in high-lying Rydberg states. The total metastable hydrogen cross section reaches a maximum value of approximately 1 X 10 to the minus 18th power sq cm at 100 eV. At the same energy, the metastable carbon cross section is 2 x 10 to the minus 19th power sq cm

    Magnetic Flux Tube Reconnection: Tunneling Versus Slingshot

    Full text link
    The discrete nature of the solar magnetic field as it emerges into the corona through the photosphere indicates that it exists as isolated flux tubes in the convection zone, and will remain as discrete flux tubes in the corona until it collides and reconnects with other coronal fields. Collisions of these flux tubes will in general be three dimensional, and will often lead to reconnection, both rearranging the magnetic field topology in fundamental ways, and releasing magnetic energy. With the goal of better understanding these dynamics, we carry out a set of numerical experiments exploring fundamental characteristics of three dimensional magnetic flux tube reconnection. We first show that reconnecting flux tubes at opposite extremes of twist behave very differently: in some configurations, low twist tubes slingshot while high twist tubes tunnel. We then discuss a theory explaining these differences: by assuming helicity conservation during the reconnection one can show that at high twist, tunneled tubes reach a lower magnetic energy state than slingshot tubes, whereas at low twist the opposite holds. We test three predictions made by this theory. 1) We find that the level of twist at which the transition from slingshot to tunnel occurs is about two to three times higher than predicted on the basis of energetics and helicity conservation alone, probably because the dynamics of the reconnection play a large role as well. 2) We find that the tunnel occurs at all flux tube collision angles predicted by the theory. 3) We find that the amount of magnetic energy a slingshot or a tunnel reconnection releases agrees reasonably well with the theory, though at the high resistivities we have to use for numerical stability, a significant amount of magnetic energy is lost to diffusion, independent of reconnection.Comment: 21 pages, 15 figures, submitted to Ap

    The R-Mode Oscillations in Relativistic Rotating Stars

    Get PDF
    The axial mode oscillations are examined for relativistic rotating stars with uniform angular velocity. Using the slow rotation formalism and the Cowling approximation, we have derived the equations governing the r-mode oscillations up to the second order with respect to the rotation. In the lowest order, the allowed range of the frequencies is determined, but corresponding spatial function is arbitrary. The spatial function can be decomposed in non-barotropic region by a set of functions associated with the differential equation of the second-order corrections. The equation however becomes singular in barotropic region, and a single function can be selected to describe the spatial perturbation of the lowest order. The frame dragging effect among the relativistic effects may be significant, as it results in rather broad spectrum of the r-mode frequency unlike in the Newtonian first-order calculation.Comment: 19 pages, 4 figures, AAS LaTeX, Accepted for publication in The Astrophysical Journa

    Optimal detection of burst events in gravitational wave interferometric observatories

    Get PDF
    We consider the problem of detecting a burst signal of unknown shape. We introduce a statistic which generalizes the excess power statistic proposed by Flanagan and Hughes and extended by Anderson et al. The statistic we propose is shown to be optimal for arbitrary noise spectral characteristic, under the two hypotheses that the noise is Gaussian, and that the prior for the signal is uniform. The statistic derivation is based on the assumption that a signal affects only affects N samples in the data stream, but that no other information is a priori available, and that the value of the signal at each sample can be arbitrary. We show that the proposed statistic can be implemented combining standard time-series analysis tools which can be efficiently implemented, and the resulting computational cost is still compatible with an on-line analysis of interferometric data. We generalize this version of an excess power statistic to the multiple detector case, also including the effect of correlated noise. We give full details about the implementation of the algorithm, both for the single and the multiple detector case, and we discuss exact and approximate forms, depending on the specific characteristics of the noise and on the assumed length of the burst event. As a example, we show what would be the sensitivity of the network of interferometers to a delta-function burst.Comment: 21 pages, 5 figures in 3 groups. Submitted for publication to Phys.Rev.D. A Mathematica notebook is available at http://www.ligo.caltech.edu/~avicere/nda/burst/Burst.nb which allows to reproduce the numerical results of the pape

    On the crosscorrelation between Gravitational Wave Detectors for detecting association with Gamma Ray Bursts

    Get PDF
    Crosscorrelation of the outputs of two Gravitational Wave (GW) detectors has recently been proposed [1] as a method for detecting statistical association between GWs and Gamma Ray Bursts (GRBs). Unfortunately, the method can be effectively used only in the case of stationary noise. In this work a different crosscorrelation algorithm is presented, which may effectively be applied also in non-stationary conditions for the cumulative analysis of a large number of GRBs. The value of the crosscorrelation at zero delay, which is the only one expected to be correlated to any astrophysical signal, is compared with the distribution of crosscorrelation of the same data for all non-zero delays within the integration time interval. This background distribution is gaussian, so the statistical significance of an experimentally observed excess would be well-defined. Computer simulations using real noise data of the cryogenic GW detectors Explorer and Nautilus with superimposed delta-like signals were performed, to test the effectiveness of the method, and theoretical estimates of its sensitivity compared to the results of the simulation. The effectiveness of the proposed algorithm is compared to that of other cumulative techniques, finding that the algorithm is particularly effective in the case of non-gaussian noise and of a large (100-1000s) and unpredictable delay between GWs and GRBs.Comment: 7 pages, 4 figures, 1 table. Submitted by Phys. Rev.

    Greybody Factors and Charges in Kerr/CFT

    Full text link
    We compute greybody factors for near extreme Kerr black holes in D=4 and D=5. In D=4 we include four charges so that our solutions can be continuously deformed to the BPS limit. In D=5 we include two independent angular momenta so Left-Right symmetry is incorporated. We discuss the CFT interpretation of our emission amplitudes, including the overall frequency dependence and the dependence on all black hole parameters. We find that all additional parameters can be incorporated Kerr/CFT, with central charge independent of U(1) charges.Comment: 27 pages. v2: typos fixed, references adde

    Unstable Nonradial Oscillations on Helium Burning Neutron Stars

    Full text link
    Material accreted onto a neutron star can stably burn in steady state only when the accretion rate is high (typically super-Eddington) or if a large flux from the neutron star crust permeates the outer atmosphere. For such situations we have analyzed the stability of nonradial oscillations, finding one unstable mode for pure helium accretion. This is a shallow surface wave which resides in the helium atmosphere above the heavier ashes of the ocean. It is excited by the increase in the nuclear reaction rate during the oscillations, and it grows on the timescale of a second. For a slowly rotating star, this mode has a frequency of approximately 20-30 Hz (for l=1), and we calculate the full spectrum that a rapidly rotating (>>30 Hz) neutron star would support. The short period X-ray binary 4U 1820--30 is accreting helium rich material and is the system most likely to show this unstable mode,especially when it is not exhibiting X-ray bursts. Our discovery of an unstable mode in a thermally stable atmosphere shows that nonradial perturbations have a different stability criterion than the spherically symmetric thermal perturbations that generate type I X-ray bursts.Comment: Accepted for publication in Astrophysical Journal, 22 pages, 14 figure

    Educational and Demographic Characteristics of Energy-Related Scientists and Engineers, 1976

    Full text link
    This analysis of the education, training, and age distribution of experienced scientists, engineers, energy-related scientists, and energy-related engineers uses the 1976 National Science Foundation National Sample data on 50,000 scientists and engineers who were in the labor force at the time of the 1970 Census. The energy-related scientists and engineers have characteristics quite similar to those of all scientists and engineers. However, energy-related scientists and engineers report slightly higher educational attainment as well as a higher incidence of supplemental training. Energy-related engineers generally are not much older than their counterparts who did not report energy-related work. Energy-related scientists, however, are older than their counterparts and can be expected to experience losses from death and retirement at a rate about 12 percent higher than the rate for all scientists over the next decade

    Using coupled micropillar compression and micro-Laue diffraction to investigate deformation mechanisms in a complex metallic alloy Al13Co4

    Get PDF
    In this investigation, we have used in-situ micro-Laue diffraction combined with micropillar compression of focused ion beam milled Al13Co4 complex metallic alloy to study the evolution of deformation in Al13Co4. Streaking of the Laue spots showed that the onset of plastic flow occured at stresses as low as 0.8 GPa, although macroscopic yield only becomes apparent at 2 GPa. The measured misorientations, obtained from peak splitting, enabled the geometrically necessary dislocation density to be estimated as 1.1 x 1013 m-2
    • …
    corecore