3,035 research outputs found

    Renormalization of hole-hole interaction at decreasing Drude conductivity

    Full text link
    The diffusion contribution of the hole-hole interaction to the conductivity is analyzed in gated GaAs/Inx_xGa1x_{1-x}As/GaAs heterostructures. We show that the change of the interaction correction to the conductivity with the decreasing Drude conductivity results both from the compensation of the singlet and triplet channels and from the arising prefactor αi<1\alpha_i<1 in the conventional expression for the interaction correction.Comment: 6 pages, 5 figure

    The quantum speed up as advanced knowledge of the solution

    Full text link
    With reference to a search in a database of size N, Grover states: "What is the reason that one would expect that a quantum mechanical scheme could accomplish the search in O(square root of N) steps? It would be insightful to have a simple two line argument for this without having to describe the details of the search algorithm". The answer provided in this work is: "because any quantum algorithm takes the time taken by a classical algorithm that knows in advance 50% of the information that specifies the solution of the problem". This empirical fact, unnoticed so far, holds for both quadratic and exponential speed ups and is theoretically justified in three steps: (i) once the physical representation is extended to the production of the problem on the part of the oracle and to the final measurement of the computer register, quantum computation is reduction on the solution of the problem under a relation representing problem-solution interdependence, (ii) the speed up is explained by a simple consideration of time symmetry, it is the gain of information about the solution due to backdating, to before running the algorithm, a time-symmetric part of the reduction on the solution; this advanced knowledge of the solution reduces the size of the solution space to be explored by the algorithm, (iii) if I is the information acquired by measuring the content of the computer register at the end of the algorithm, the quantum algorithm takes the time taken by a classical algorithm that knows in advance 50% of I, which brings us to the initial statement.Comment: 23 pages, to be published in IJT

    Giant suppression of the Drude conductivity due to quantum interference in disordered two-dimensional systems

    Full text link
    Temperature and magnetic field dependences of the conductivity in heavily doped, strongly disordered two-dimensional quantum well structures GaAs/Inx_xGa1x_{1-x}As/GaAs are investigated within wide conductivity and temperature ranges. Role of the interference in the electron transport is studied in the regimes when the phase breaking length LϕL_\phi crosses over the localization length ξlexp(πkFl/2)\xi\sim l\exp{(\pi k_Fl/2)} with lowering temperature, where kFk_F and ll are the Fermi quasimomentum and mean free path, respectively. It has been shown that all the experimental data can be understood within framework of simple model of the conductivity over delocalized states. This model differs from the conventional model of the weak localization developed for kFl1k_Fl\gg 1 and LϕξL_\phi\ll\xi by one point: the value of the quantum interference contribution to the conductivity is restricted not only by the phase breaking length LϕL_\phi but by the localization length ξ\xi as well. We show that just the quantity (τϕ)1=τϕ1+τξ1(\tau_\phi^\ast)^{-1}=\tau_\phi^{-1}+\tau_\xi^{-1} rather than τϕ1\tau_\phi^{-1}, where τϕT1\tau_\phi\propto T^{-1} is the dephasing time and τξτexp(πkFl)\tau_\xi\sim\tau\exp(\pi k_F l), is responsible for the temperature and magnetic field dependences of the conductivity over the wide range of temperature and disorder strength down to the conductivity of order 102e2/h10^{-2} e^2/h.Comment: 11 pages, 15 figure

    Diffusion and ballistic contributions of the interaction correction to the conductivity of a two-dimensional electron gas

    Full text link
    The results of an experimental study of interaction quantum correction to the conductivity of two-dimensional electron gas in A3_3B5_5 semiconductor quantum well heterostructures are presented for a wide range of TτT\tau-parameter (Tτ0.030.8T\tau\simeq 0.03-0.8), where τ\tau is the transport relaxation time. A comprehensive analysis of the magnetic field and temperature dependences of the resistivity and the conductivity tensor components allows us to separate the ballistic and diffusion parts of the correction. It is shown that the ballistic part renormalizes in the main the electron mobility, whereas the diffusion part contributes to the diagonal and does not to the off-diagonal component of the conductivity tensor. We have experimentally found the values of the Fermi-liquid parameters describing the electron-electron contribution to the transport coefficients, which are found in a good agreement with the theoretical results.Comment: 11 pages, 11 figure

    One-dimensional collision carts computer model and its design ideas for productive experiential learning

    Full text link
    We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In the field of designing computer simulations, we discuss briefly three pedagogical considerations such as 1) consistent simulation world view with pen paper representation, 2) data table, scientific graphs and symbolic mathematical representations for ease of data collection and multiple representational visualizations and 3) game for simple concept testing that can further support learning. We also suggest using physical world setup to be augmented complimentary with simulation while highlighting three advantages of real collision carts equipment like tacit 3D experience, random errors in measurement and conceptual significance of conservation of momentum applied to just before and after collision. General feedback from the students has been relatively positive, and we hope teachers will find the simulation useful in their own classes. 2015 Resources added: http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/46-one-dimension-collision-js-model http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/195-elastic-collisionComment: 6 pages, 8 figures, 1 table, 1 L. K. Wee, Physics Education 47 (3), 301 (2012); ISSN 0031-912

    Localized states and interaction induced delocalization in Bose gases with quenched disorder

    Get PDF
    Very diluted Bose gas placed into a disordered environment falls into a fragmented localized state. At some critical density the repulsion between particles overcomes the disorder. The gas transits into a coherent superfluid state. In this article the geometrical and energetic characteristics of the localized state at zero temperature and the critical density at which the quantum phase transition from the localized to the superfluid state proceeds are found.Comment: 17 pages, 5 figur

    Top Management Team Diversity: A systematic Review

    Get PDF
    Empirical research investigating the impact of top management team (TMT) diversity on executives’ decision making has produced inconclusive results. To synthesize and aggregate the results on the diversity-performance link, a meta-regression analysis (MRA) is conducted. It integrates more than 200 estimates from 53 empirical studies investigating TMT diversity and its impact on the quality of executives’ decision making as reflected in corporate performance. The analysis contributes to the literature by theoretically discussing and empirically examining the effects of TMT diversity on corporate performance. Our results do not show a link between TMT diversity and performance but provide evidence for publication bias. Thus, the findings raise doubts on the impact of TMT diversity on performance

    Blaming the victim, all over again: Waddell and Aylward's biopsychosocial (BPS) model of disability

    Get PDF
    The biopsychosocial (BPS) model of mental distress, originally conceived by the American psychiatrist George Engel in the 1970s and commonly used in psychiatry and psychology, has been adapted by Gordon Waddell and Mansell Aylward to form the theoretical basis for current UK Government thinking on disability. Most importantly, the Waddell and Aylward version of the BPS has played a key role as the Government has sought to reform spending on out-of- work disability benefits. This paper presents a critique of Waddell and Aylward’s model, examining its origins, its claims and the evidence it employs. We will argue that its potential for genuine inter-disciplinary cooperation and the holistic and humanistic benefits for disabled people as envisaged by Engel are not now, if they ever have been, fully realized. Any potential benefit it may have offered has been eclipsed by its role in Coalition/Conservative government social welfare policies that have blamed the victim and justified restriction of entitlements
    corecore