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Abstract. - Very diluted Bose gas placed into a disordered environment falls into a fragmented
localized state. At some critical density the repulsion between particles overcomes the disorder.
The gas transits into a coherent superfluid state. In this article the geometrical and energetic
characteristics of the localized state at zero temperature and the critical density at which the
quantum phase transition from the localized to the superfluid state proceeds are found.

Introduction. – The interplay between interaction
and disorder is an important paradigm of condensed mat-
ter physics. In 1958 Anderson [1] showed that in disor-
dered solids a non-interacting electron may become lo-
calized due to the quantum interference. A phenomeno-
logical theory of localization [2, 3] concluded that non-
interacting electrons in one and two dimensions are always
localized. In three dimensions the localized and extended
states are separated by the mobility edge. States with
energy significantly below this edge in 3 dimensions are
strongly localized. They appear in rare fluctuations of the
quenched random potential [4–6]. These instanton-type
states broaden and eventually overlap with growing en-
ergy. A system of non-interacting fermions in the random
potential transits from the insulator to metal state when
its Fermi energy exceeds the mobility edge. Thus, the
Pauli principle delocalizes fermions in 3 dimensions, but
leave them localized in lower dimensions. The common be-
lief is that the repulsive interaction suppresses the localiza-
tion. So far this problem was studied only in the limit of a
weak disorder [7,8]. Therefore, the interaction induced de-
localization transition remains beyond the frameworks of
the theory. The metal-insulator transition in 2 dimensions
was observed in experiments [9] suggesting the decisive
role of interaction. The physical picture changes drasti-
cally for bosons. The non-interacting bosons condense at
a single-particle state with the lowest energy. In a homoge-
neous system it leads to a coherent quantum state known
as the Bose-Einstein condensate (BEC). Examples are su-
perfluid phases of He [10], superconductors [11], BEC of

ultra-cold alkali atoms [12,13] and of excitons in semicon-
ductors [14]. BEC still persists when a small amount of
disorder is added to the system. BEC in a random en-
vironment was observed in the superfluid phase of 4He
in Vycor glass or aerogels [15] , in 3He in aerogels [16]
and in ultra-cold alkali atoms in disordered traps [17–23].
But in a random environment and in the absence of in-
teraction, all Bose-particles fall into the lowest localized
single-particle state. Such a ground state is non-ergodic
since its energy and spatial extension depend on a specific
realization of the disorder. An arbitrary small repulsive
interaction redistributes the bosons over multiple poten-
tial wells and restores ergodicity. Hence, contrary to the
fermionic case, the perturbation theory with respect to
the interaction strength is invalid. At low temperature,
the Bose systems display superfluidity provided the den-
sity n of bosons exceeds a critical value nc. At either
weak disorder or strong interaction, i.e. at n ≫ nc, the
disorder corrections to the superfluid density ns (and the
condensate density n0) are small [24–26] . These correc-
tion blow up with the interaction decreasing, signaling the
breakdown of the theory.

We present an alternative approach to the problem
of the interaction-induced delocalization starting from
deeply localized state of the Bose-gas in a random poten-
tial. We present a simple and visual picture of the deeply
localized state, which decays into remote weakly coupled
fragments. We give a geometrical description of fragments
and their distribution in space. At a critical density nc,
which we express in terms of the disorder characteristic
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and interaction strength, the increasing tunneling of par-
ticles between fragments leads to transition from the ran-
dom singlet state to the coherent superfluid.

Single-particle levels in an uncorrelated random

potential. – The random environment produces a ran-
dom potential U(x) for the bosons. We assume that U(x)
is Gaussian distributed with zero average and short range
correlations

〈U (x)U (x′)〉 = κ2δ(x− x′) (1)

We will consider briefly the long range correlated case at
the end of this article. In the absence of interaction the
single-particle wave functions obey the the Schrödinger
equation

h̄2

2m
∇2ψ + (E − U (x))ψ = 0. (2)

Its energy levels E [U (x)] are functionals of the potential
U (x). The only characteristic of the random potential
κ together with the Planck’s constant h̄ and the mass m
establishes the scales of length and energy:

L =
h̄4

m2κ2
, E =

h̄2

mL2
, (3)

which we call the Larkin length and Larkin energy, re-
spectively [27]. The density of states ν(E) belonging to
(2) in the limit E < 0, |E| ≫ E was calculated in [4–6]
(for a complete summary see [28]). For 3d system with
the volume Ω it reads:

ν(E) =
1

Ω
〈δ (E − E [U (x)])〉 ∼ N (E)e−(|E|/E)1/2 , (4)

where we absorbed a numerical constant in the exponent of
ν(E) in the definition of E . As we show below the precise
form of the prefactorN (E) is not relevant for our consider-
ation. In a large 3d volume the states with energy E ≫ E
are delocalized, whereas the states with negative energy
sufficiently large by modulus E < 0 and |E| ≫ E are
strongly localized. The threshold of localization is a posi-
tive energy of the order of E [29]. In the interval between
E and −E the transition from the extended to strongly lo-
calized states proceeds. The latter are supported by rare
fluctuations of the random potential, which form a poten-
tial well sufficiently deep to have the negative energy E as
its only bound state. Let us introduce the spatial density
nw(E) with the energy less than E. It is related to the

DOS by equation nw(E) =
∫ E

−∞
ν(E)dE. For deep levels

it can be also considered as the spatial density of states
nw(R) with the radius less than R, where R = h̄/

√

2m|E|.
For such states nw(R) is proportional to a small exponent
exp(−

√

| E |/E) = exp(−L/R). From the dimensionality
consideration it follows:

nw(E) = R−3f

(L
R

)

exp

(

−L
R

)

. (5)

The function f(x) can be found from Ref. [30] to be pro-
portional to f(x) ∼ xα with α = 1. It will be inessential

for further calculation. The average distance d(R) be-
tween the wells of the radius less than R reads: d(R) =

n
−1/3
w = Rf−1/3 exp

(

L
3R

)

. Thus, the distances between
the wells are significantly larger than their sizes. The tun-
neling factor t (R) between two typical wells with the ra-
dius R of the same order of magnitude is given by a semi-
classical expression t (R) = exp

(

− 1
h̄

∫

|p| dl
)

, where the
path of integration connects the two wells. By the order
of magnitude p ∼ h̄/R and the length of the integration
path is ∼ d (R). Thus, 1

h̄

∫

|p| dl ≈ d/R ≈ f−1/3 exp
(

L
3R

)

and

t (R) = exp

[

−f−1/3 exp

( L
3R

)]

. (6)

At R ∼ L/3 or E ∼ −9E , the distances between the opti-
mal potential wells become of the same order of magnitude
as their size R. Simultaneously the tunneling amplitude
between the wells becomes of the order of 1. The poten-
tial wells percolate and tunneling is not small, but the
states still are not propagating due to the Anderson local-
ization [1].

Bose gas in a large box with an uncorrelated

random potential. – In the ground state of an ideal
Bose gas in a large box with the Gaussian random po-
tential all particles are located at the deepest fluctuation
level. In the box of cubic shape with the side L the deep-
est level which occurs with probability of the order of 1
has the radius R determined by equation: L3nw (R) = 1,
i.e. R ∼ L

3 ln(L/L) . The prefactor f introduces a negligible

correction to the denominator of the order of ln
(

ln L
L

)

.

The corresponding energy is E ∼ −9E
(

ln L
L

)2
. As we

already mentioned such a state is non-ergodic since the
location and the depth of the deepest level strongly de-
pends on a specific realization of the disordered potential.
Therefore, the average energy per particle and other prop-
erties averaged over the ensemble has nothing in common
with the properties of a specific sample. Even an infinitely
small repulsion makes the system ergodic in the thermo-
dynamic limit, i.e. when first the size of the system grows
to infinity and then the interaction goes to zero. In a
sufficiently large volume any physical value per particle
coincides with its average over the ensemble. The reason
of such a sharp change is that, at any small but finite in-
teraction, the energy of particles repulsion overcomes their
attraction to the potential well when the number of par-
ticles increases. They will be redistributed over multiple
wells. Since the distribution of wells in different parts of
sufficiently large volume passes all possible random config-
urations with proper ensemble probabilities, the ergodicity
is established. Below we find how the interacting particles
eventually fill localized states. In a real experiment the
Bose gas may be quenched in a metastable state depending
on the cooling rate and other non-thermodynamic factors.
This is what M.P.A. Fisher et al. [31] call the Bose glass.
Such a state is also possible in the case of weakly repul-
sive Bose gas. However, as it will be demonstrated later,
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in the case of cooled alkali atoms the tunneling amplitude
still remains large enough to ensure the relaxation to the
equilibrium state in 10−3÷10−2s. Our further estimates
relate to the real ground state. As in the Bogolyubov’s
theory [32] we assume that the gas criterion na3 ≪ 1 is
satisfied. Here n = N/Ω is the average particle density; N
is their total number and a is the scattering length. Im-
plicitly our considerations takes in account the change of
the optimal potential well due to the interaction.
Let the Bose gas with the average density of parti-

cles n fill all potential wells with the radii less than R
in the ground state. The average number of particles
per well is Nw (R) = n/nw (R). The local density inside

the well of the linear size R is np(R) = 3Nw(R)
4πR3 . The

gain of energy per particle due to random potential is

E (R) = − h̄2

2mR2 ; the repulsion energy due to interaction

is equal to gnp (R) =
3h̄2Nw(R)a

mR3 , where we used the well-
known relation for an effective potential field induced by
a gas of scatterers [33]. Minimizing the total energy per

particle Etot (R) = − h̄2

2mR2 + 3h̄2Nw(R)a
mR3 over R we find

the value of R corresponding to the minimum of energy at
fixed n with the logarithmic precision:

R (n) =
L

ln(nc/n)
. (7)

where nc =
(

3L2a
)−1

denotes the critical density. The
factor f in equation (5) leads to corrections of the type
ln (ln(nc/n)) which can be neglected. Further we put f =
1. The distances between the filled wells according to the
corresponding expression d(R) for single-particle states

reads d (n) = L(ln(nc/n))
−1 (nc/n)

1/3
. They strongly ex-

ceed the average size of the potential well (7) at n ≪ nc.
At the same condition the chemical potential of atoms can

be estimated as µ (n) = − h̄2

2mR2(n) = −E
2

(

ln nc

n

)2
. The

tunneling amplitude t (n) between two wells separated by
a typical distance d (n) can be found by employing the
single particle result (6):

t (n) = exp
[

− (nc/n)
1/3

]

. (8)

Thus, the Bose gas at n ≪ nc is fragmented into multi-
ple clusters of small size R (n) separated by much larger

distances d (n) and containing about L/
[

3a
(

ln nc

n

)3
]

par-

ticles each. The amplitude of tunneling between the wells
depends on the scattering length in a non-analytic way and
is exponentially small for weak interaction. Therefore, the
number of particles in each cluster is well defined. As a
consequence, the phase is completely uncertain. Such a
state is a singlet with non-uniformly distributed particles,
a random singlet: the ground state is non-degenerate. The
compressibility ∂n

∂µ = n
E ln nc

n is finite as expected for the

Bose glass phase [31].

Bosons in atomic traps. – Our results can be easily
extended to bosons in harmonic traps characterized by a

Thomas-Fermi

ln(Na/ℓ)

ln(ℓ/L)

R ≈ ℓ
non-ergodic

fragmented

L∼ ℓ
2

L
ln(ℓ/L)

harmonic

Γ =1

R∼ (Naℓ
4)1/5

L ∼
ℓ
2

L
ln( ℓ

6

NaL5 )

Fig. 1: Regime diagram of atoms in traps: uncorrelated disor-
der. R denotes the size of the single existing atomic cloud. L

is the size of the cloud of fragments.

potential

Vtrap =
mω2R2

2
=

h̄2

2m

R2

ℓ4
(9)

where we introduced the oscillator length ℓ =
√

h̄/(mω).
This section partly overlaps sligthly with our previous
work [34]. The energy of the bosons includes now four
terms: the kinetic energy, the confining potential energy
of the trap, the repulsion from other particles and the
energy of the random potential. Two of them, the inter-
action with the trap and the random potential tend to
confine and localize the particle. Going through essen-
tially the same steps as before, we can distinguish four
different regimes (Figure 1).
1. Weak disorder and weak interaction: 3Na ≪ ℓ ≪ L .
In this case the interaction can be neglected. Minimizing
the remaining terms, the kinetic energy and energy of the
trap, we find R = ℓ. Physically it means that all particles
are condensed in the oscillator ground state.
2. Weak disorder and strong interaction: ℓ ≪ L, ℓ ≪
3Na . Neglecting the kinetic energy and minimizing re-
maining energy of traps plus the repulsion energy, one
finds the result known as Thomas-Fermi approximation

[13]: R =
(

9
2Naℓ

4
)1/5

.
3. Strong disorder and weak interaction : 3Na≪ L ≪ ℓ .
In this range of variables the non-ergodic phase is realized.
Since interaction is negligible, the particles find a random
potential well with the deepest level and fall into it. Let
such a well can be found at a distance ∼ L from the trap
center. Its depth typically is about 9E ln2 (L/L). This
gain of energy must be not less than the loss of the trap
energy mω2L2/2. A typical value of L appears when both
this energies have the same order of magnitude. Thus,
L ≈ 6

√
2
(

ℓ2/L
)

ln (ℓ/L). A typical size of the well is
R ≈ L/ (6 ln (ℓ/L)).
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4. Strong disorder and moderate interaction: L ≪
3Na ≪ ℓ. In this case the ergodicity is restored. Our
experience with the gas in a box prompts that the gas
cloud is split into fragments each occupying a random
potential well from very small size till same size R de-
pending on N . The typical disorder energy per particle is

µ = −E
(

ln nc

n

)2
. It becomes equal to the trap energy at

the distance L ∼
(

ℓ2/L
)

ln Γ where Γ is a new dimension-
less parameter

Γ =
ℓ6

3NaL5
∼ nc

n
. (10)

Therefore, the average density is n ∼ NL3/ℓ6. The state
of the Bose gas is fragmented and strongly localized when
Γ is large; the transition to delocalized superfluid state
proceeds when this ratio becomes ∼1. The phase diagram
is shown in Fig. 1. Note the counter-intuitive dependence
of the size on the number of particles: the cloud slightly
contracts with increasing number of particles. It happens
because the number of particles in each fragment increases
more rapidly with the average density than the number of
fragments.

Correlated disorder. – So far we considered un-
correlated disorder (1). Our results can be extended to
random potentials with a finite correlation length b and
strength U0 =

√

〈U2 (x)〉. We quote here the results
without derivation, which can be found in Ref. [36]. As

long as b ≪ L = 3h̄4

4πm2U2

0
b3

the results of the previous

considerations remain correct. In the opposite case the
optimal potential wells have the width b and, contrary
to the short range correlated case, they contain many
bound states (of the order of (b/L)3/4 ≫ 1). It is con-

venient to introduce a new length scale B = b (L/b)1/4 =

(3/4π)
1/4 (

h̄2/mU0

)1/2
. In the following we restrict our

consideration to the case b ≫ L, i.e. b ≫ B. The den-
sity of states in this case is ν(E) ∼ exp[−(E/U0)

2] [28].
The critical density is nc ∼ 1/(aB2) (this result has
been found before in [35]) and the typical size of a frag-
ment is R ≈ b(ln(nc/n))

−1/2. The distance between frag-
ments is d(n) ≈ b(nc/n)

1/3 and the tunneling coefficient
is t(n) ≈ exp[−(b/B)(nc/n)

1/3].

In the case of a harmonic trap we again find four
different regimes (Fig. 2). The relevant parameter is
Γ = ℓ6/(NaB5) ≈ nc/n. For Γ ≈ 1 the transition to the
superfluid phase proceeds. All results can be extended to
lower dimensions [36].

Conclusions. – Four parameters can be controllably
and independently varied in the experiment. They are:
number of particles N ; the frequency ω or equivalently
the strength of the trap; the scattering length a (it can be
varied by approaching one of the Feshbach resonances);
the strength of disorder U0. Using this freedom it is feasi-
ble to pass all regimes described above. A simple estimate
shows that, at b ∼ 1µm, the transition from uncorrelated
to strongly correlated regime proceeds at frequency of dis-

Thomas-Fermi

ln(Na/ℓ)

R ≈ ℓ

harmonic

Γ =1

R ∼ (Naℓ
4)1/5

L ∼
ℓ
2

B

(

ln
ℓ
2

bB

)1/4

L ∼
ℓ
2

B

(

ln
ℓ
6

NaB5

)1/4

ln(ℓ/B)

fragmented

non-ergodic

Fig. 2: Regime diagram of atoms in traps: correlated disorder.
R denotes the size of the single atomic cloud, L denotes the
size of the fragmented state.

order potential ωd =
√

2U0/mb2 ∼ 1kHz which is acces-
sible.

Simplest experiments are the measurements of the cloud
size L as a function of different variable parameters in the
regime of multiple localized fragments. Theory predicts
that in the regime of uncorrelated disorder the size of the
cloud is proportional to U2

0 /ω . It also predicts very weak
dependence of the size on the number of particles ∼ lnN .
In the case of strongly correlated disorder the size of the

cloud is proportional to ωU
1/2
0 ; the dependence on N also

is weaker than in the uncorrelated regime: L ∝ (lnN)
1/4

.

It would be important to observe the transition from
non-ergodic state with one or few fragments to the er-
godic state with many fragments and check that it hap-
pens at N = L/3a for uncorrelated disorder and at
N =

(

b3/3aB2
)

for strongly correlated disorder.

Another feasible experiment is the time-of-flight spec-
troscopy after switching off both the trap and the random
potential. In this experiment the distribution of particles
over momenta (velocities) is measured. Its width ∆p is
associated with the average size of the fragment R by the
uncertainty relation ∆p = h̄/R. It gives the opportunity
to check the equation R = L/ ln Γ for the uncorrelated
disorder or R = L/ ln Γ for correlated disorder. Installing
a counter close to the trap, at a distance comparable to
the size of the trap, would allow to register the oscillations
of the particle flux due to discrete character of the frag-
mented state. This is an opportunity to find the distances
between fragments and compare theory with experiment.

The transition between localized and delocalized coher-
ent state in the random potential was found in several ex-
periments (see Introduction). We propose to make more
detailed measurement of the transition manifold and check
our predictions.
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An important question is whether the relaxation to the
ground state can be reached during a reasonable time in-
terval compatible with the time of experiment. We analyze
this question for the uncorrelated or weakly correlated dis-
order. In this case the relaxation time due to tunneling can
be estimated as τ = 2πω−1

n t−1, where ωn ∼ E
h̄ (ln Γ)

2
is the

characteristic frequency of the optimal potential well and
t ∼ exp

[

−Γ1/3
]

is the tunneling coefficient (see eq. (8)).
For numerical estimates we accept Γ ∼ 125, ℓ ∼ 10µm,
b ∼ L ∼ 1µm, a ∼ 0.01µm, N ≃ 27, 000. Then t−1 = 148
and τ ∼ 0.06s. The Larkin length can be increased by
decreasing the amplitude of the random potential. Simul-
taneously, at fixed values N , ℓ and a, the value Γ decreases
as L−5. This example shows that the equilibrium is ac-
cessible, though it is difficult to reach large ratio L/b.
The closest to ours was the approach developed in the

work Lugan et al. [20]. Apart from the fact that these
authors considered only the 1-dimensional case, the main
difference between our and their problems is that they con-
sidered the random potential with the exact lower bound-
ary Ub and with on-site distribution function W [U ] ∝
exp[−c(U−Ub)] instead of a Gaussian distribution. Such a
distribution allows deeply localized states only at energies
E close to the exact lower boundary Ub. The correspond-
ing fluctuations have the width R the broader the closer
is E to Ub. It is clear that these levels are very different
from those discussed above. If the random potential has
the exact lower boundary, our theory is valid only if this
boundary is separated from the most probable value of
the potential by an energy interval strongly exceeding the
energy dispersion. Then the localized states of our theory
appear at intermediate energies between dispersion and
Ub.
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