97 research outputs found

    Asymptotics and zeros of Sobolev orthogonal polynomials on unbounded supports

    Get PDF
    In this paper we present a survey about analytic properties of polynomials orthogonal with respect to a weighted Sobolev inner product such that the vector of measures has an unbounded support. In particular, we are focused in the study of the asymptotic behaviour of such polynomials as well as in the distribution of their zeros. Some open problems as well as some new directions for a future research are formulated.Comment: Changed content; 34 pages, 41 reference

    A novel superconducting glass state in disordered thin films in Clogston limit

    Full text link
    A theory of mesoscopic fluctuations in disordered thin superconducting films in a parallel magnetic field is developed. At zero temperature, the superconducting state undergoes a phase transition into a state characterized by superfluid densities of random signs, instead of a spin polarized disordered Fermi liquid phase. Consequently, the ground state belongs to the same universality class as the 2D XY spin glass. As the magnetic field increases further, mesoscopic pairing states are nucleated in an otherwise homogeneous spin polarized disordered Fermi liquid. The statistics of these pairing states is universal depending on the sheet conductance of the 2D film.Comment: Latex, 39 pages, 2 figures included; to appear in Int. J. Mod. Phys.

    Density of States of Disordered Two-Dimensional Crystals with Half-Filled Band

    Full text link
    A diagrammatic method is applied to study the effects of commensurability in two-dimensional disordered crystalline metals by using the particle-hole symmetry with respect to the nesting vector P_0={\pm{\pi}/a, {\pi}/a} for a half-filled electronic band. The density of electronic states (DoS) is shown to have nontrivial quantum corrections due to both nesting and elastic impurity scattering processes, as a result the van Hove singularity is preserved in the center of the band. However, the energy dependence of the DoS is strongly changed. A small offset from the middle of the band gives rise to disappearence of quantum corrections to the DoS .Comment: to be published in Physical Review Letter

    Strong asymptotics for Jacobi polynomials with varying nonstandard parameters

    Get PDF
    Strong asymptotics on the whole complex plane of a sequence of monic Jacobi polynomials Pn(αn,βn)P_n^{(\alpha_n, \beta_n)} is studied, assuming that limnαnn=A,limnβnn=B, \lim_{n\to\infty} \frac{\alpha_n}{n}=A, \qquad \lim_{n\to\infty} \frac{\beta _n}{n}=B, with AA and BB satisfying A>1 A > -1, B>1 B>-1, A+B<1A+B < -1. The asymptotic analysis is based on the non-Hermitian orthogonality of these polynomials, and uses the Deift/Zhou steepest descent analysis for matrix Riemann-Hilbert problems. As a corollary, asymptotic zero behavior is derived. We show that in a generic case the zeros distribute on the set of critical trajectories Γ\Gamma of a certain quadratic differential according to the equilibrium measure on Γ\Gamma in an external field. However, when either αn\alpha_n, βn\beta_n or αn+βn\alpha_n+\beta_n are geometrically close to Z\Z, part of the zeros accumulate along a different trajectory of the same quadratic differential.Comment: 31 pages, 12 figures. Some references added. To appear in Journal D'Analyse Mathematiqu

    Scaling of the Conductivity with Temperature and Uniaxial Stress in Si:B at the Metal-Insulator Transition

    Full text link
    Using uniaxial stress to tune Si:B through the metal-insulator transition we find the conductivity at low temperatures shows an excellent fit to scaling with temperature and stress on both sides of the transition. The scaling functions yield the conductivity in the metallic and insulating phases, and allow a reliable determination of the temperature dependence in the critical regions on both sides of the transition

    Bulk Tunneling at Integer Quantum Hall Transitions

    Full text link
    The tunneling into the {\em bulk} of a 2D electron system (2DES) in strong magnetic field is studied near the integer quantum Hall transitions. We present a nonperturbative calculation of the tunneling density of states (TDOS) for both Coulomb and short-ranged electron-electron interactions. In the case of Coulomb interaction, the TDOS exhibits a 2D quantum Coulomb gap behavior, \nu(\ve)=C_Q\ave/e^4, with CQC_Q a nonuniversal coefficient of quantum mechanical origin. For short-ranged interactions, we find that the TDOS at low bias follows \nu(\ve)/\nu (0)=1+(\ave/\ve_0)^\gamma, where γ\gamma is a universal exponent determined by the scaling dimension of short-ranged interactions.Comment: 4 pages, revtex, final version to appear in Phys. Rev. Let

    Новый подход к ВЭЖХ-анализу жидких витаминсодержащих лекарственных форм

    Get PDF
    A single-step HPLC method for the determination of fat-soluble vitamins and some additives in several liquid medicines by reverse phase in the isocratic mode was developed.Разработана методика одностадийного количественного анализа жирорастворимых витаминов и некоторых вспомогательных веществ ряда жидких лекарственных средств на обращенной фазе в изократическом режиме

    Two-dimensional Anderson-Hubbard model in DMFT+Sigma approximation

    Full text link
    Density of states, dynamic (optical) conductivity and phase diagram of paramagnetic two-dimensional Anderson-Hubbard model with strong correlations and disorder are analyzed within the generalized dynamical mean-field theory (DMFT+Sigma approximation). Strong correlations are accounted by DMFT, while disorder is taken into account via the appropriate generalization of the self-consistent theory of localization. We consider the two-dimensional system with the rectangular "bare" density of states (DOS). The DMFT effective single impurity problem is solved by numerical renormalization group (NRG). Phases of "correlated metal", Mott insulator and correlated Anderson insulator are identified from the evolution of density of states, optical conductivity and localization length, demonstrating both Mott-Hubbard and Anderson metal-insulator transitions in two-dimensional systems of the finite size, allowing us to construct the complete zero-temperature phase diagram of paramagnetic Anderson-Hubbard model. Localization length in our approximation is practically independent of the strength of Hubbard correlations. However, the divergence of localization length in finite size two-dimensional system at small disorder signifies the existence of an effective Anderson transition.Comment: 10 pages, 10 figures, improve phase diagra

    Granulated superconductors:from the nonlinear sigma model to the Bose-Hubbard description

    Get PDF
    We modify a nonlinear sigma model (NLSM) for the description of a granulated disordered system in the presence of both the Coulomb repulsion and the Cooper pairing. We show that under certain controlled approximations this model is reduced to the Bose-Hubbard (or ``dirty-boson'') model with renormalized coupling constants. We obtain a more general effective action (which is still simpler than the full NLSM action) which can be applied in the region of parameters where the reduction to the Bose-Hubbard model is not justified. This action may lead to a different picture of the superconductor-insulator transition in 2D systems.Comment: 4 pages, revtex, no figure

    Computation of the entropy of polynomials orthogonal on an interval.

    Get PDF
    We give an effective method to compute the entropy for polynomials orthogonal on a segment of the real axis that uses as input data only the coefficients of the recurrence relation satisfied by these polynomials. This algorithm is based on a series expression for the mutual energy of two probability measures naturally connected with the polynomials. The particular case of Gegenbauer polynomials is analyzed in detail. These results are applied also to the computation of the entropy of spherical harmonics, important for the study of the entropic uncertainty relations as well as the spatial complexity of physical systems in central potentials
    corecore