62 research outputs found

    The Flexibility of Nonconsciously Deployed Cognitive Processes: Evidence from Masked Congruence Priming

    Get PDF
    Background: It is well accepted in the subliminal priming literature that task-level properties modulate nonconscious processes. For example, in tasks with a limited number of targets, subliminal priming effects are limited to primes that are physically similar to the targets. In contrast, when a large number of targets are used, subliminal priming effects are observed for primes that share a semantic (but not necessarily physical) relationship with the target. Findings such as these have led researchers to conclude that task-level properties can direct nonconscious processes to be deployed exclusively over central (semantic) or peripheral (physically specified) representations. Principal Findings: We find distinct patterns of masked priming for "novel" and "repeated" primes within a single task context. Novel primes never appear as targets and thus are not seen consciously in the experiment. Repeated primes do appear as targets, thereby lending themselves to the establishment of peripheral stimulus-response mappings. If the source of the masked priming effect were exclusively central or peripheral, then both novel and repeated primes should yield similar patterns of priming. In contrast, we find that both novel and repeated primes produce robust, yet distinct, patterns of priming. Conclusions: Our findings indicate that nonconsciously elicited cognitive processes can be flexibly deployed over both central and peripheral representations within a single task context. While we agree that task-level properties can influence nonconscious processes, our findings sharply constrain the extent of this influence. Specifically, our findings are inconsistent with extant accounts which hold that the influence of task-level properties is strong enough to restrict the deployment of nonconsciously elicited cognitive processes to a single type of representation (i.e. central or peripheral).13 page(s

    Astrovirus MLB1 Is Not Associated with Diarrhea in a Cohort of Indian Children

    Get PDF
    Astroviruses are a known cause of human diarrhea. Recently the highly divergent astrovirus MLB1 (MLB1) was identified in a stool sample from a patient with diarrhea. It has subsequently been detected in stool from individuals with and without diarrhea. To determine whether MLB1 is associated with diarrhea, we conducted a case control study of MLB1. In parallel, the prevalence of the classic human astroviruses (HAstVs) was also determined in the same case control cohort. 400 cases and 400 paired controls from a longitudinal birth cohort in Vellore, India were analyzed by RT-PCR. While HAstVs were associated with diarrhea (p = 0.029) in this cohort, MLB1 was not; 14 of the controls and 4 cases were positive for MLB1. Furthermore, MLB1 viral load did not differ significantly between the cases and controls. The role of MLB1 in human health still remains unknown and future studies are needed

    The Cosmology of Composite Inelastic Dark Matter

    Get PDF
    Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark mesons and baryons results in several qualitatively different configurations of the resulting dark matter hadrons depending on the relative mass scales in the system.Comment: 31 pages, 4 figures; references added, typos correcte

    The Flexible Nature of Unconscious Cognition

    Get PDF
    The cognitive signature of unconscious processes is hotly debated recently. Generally, consciousness is thought to mediate flexible, adaptive and goal-directed behavior, but in the last decade unconscious processing has rapidly gained ground on traditional conscious territory. In this study we demonstrate that the scope and impact of unconscious information on behavior and brain activity can be modulated dynamically on a trial-by-trial basis. Participants performed a Go/No-Go experiment in which an unconscious (masked) stimulus preceding a conscious target could be associated with either a Go or No-Go response. Importantly, the mapping of stimuli onto these actions varied on a trial-by-trial basis, preventing the formation of stable associations and hence the possibility that unconscious stimuli automatically activate these control actions. By eliminating stimulus-response associations established through practice we demonstrate that unconscious information can be processed in a flexible and adaptive manner. In this experiment we show that the same unconscious stimulus can have a substantially different effect on behavior and (prefrontal) brain activity depending on the rapidly changing task context in which it is presented. This work suggests that unconscious information processing shares many sophisticated characteristics (including flexibility and context-specificity) with its conscious counterpart

    Ephrin-A5 Suppresses Neurotrophin Evoked Neuronal Motility, ERK Activation and Gene Expression

    Get PDF
    During brain development, growth cones respond to attractive and repulsive axon guidance cues. How growth cones integrate guidance instructions is poorly understood. Here, we demonstrate a link between BDNF (brain derived neurotrophic factor), promoting axonal branching and ephrin-A5, mediating axonal repulsion via Eph receptor tyrosine kinase activation. BDNF enhanced growth cone filopodial dynamics and neurite branching of primary neurons. We show that ephrin-A5 antagonized this BDNF-evoked neuronal motility. BDNF increased ERK phosphorylation (P-ERK) and nuclear ERK entry. Ephrin-A5 suppressed BDNF-induced ERK activity and might sequester P-ERK in the cytoplasm. Neurotrophins are well established stimulators of a neuronal immediate early gene (IEG) response. This is confirmed in this study by e.g. c-fos, Egr1 and Arc upregulation upon BDNF application. This BDNF-evoked IEG response required the transcription factor SRF (serum response factor). Notably, ephrin-A5 suppressed a BDNF-evoked neuronal IEG response, suggesting a role of Eph receptors in modulating gene expression. In opposite to IEGs, long-term ephrin-A5 application induced cytoskeletal gene expression of tropomyosin and actinin. To uncover specific Eph receptors mediating ephrin-As impact on neurotrophin signaling, EphA7 deficient mice were analyzed. In EphA7 deficient neurons alterations in growth cone morphology were observed. However, ephrin-A5 still counteracted neurotrophin signaling suggesting that EphA7 is not required for ephrin and BDNF crosstalk. In sum, our data suggest an interaction of ephrin-As and neurotrophin signaling pathways converging at ERK signaling and nuclear gene activity. As ephrins are involved in development and function of many organs, such modulation of receptor tyrosine kinase signaling and gene expression by Ephs might not be limited to the nervous system

    The Met oncogene and basal-like breast cancer: another culprit to watch out for?

    Get PDF
    Recent findings suggest the involvement of the MET oncogene, encoding the tyrosine kinase receptor for hepatocyte growth factor, in the onset and progression of basal-like breast carcinoma. The expression profiles of basal-like tumors - but not those of other breast cancer subtypes - are enriched for gene sets that are coordinately over-represented in transcriptional signatures regulated by Met. Consistently, tissue microarray analyses have revealed that Met immunoreactivity is much higher in basal-like cases of human breast cancer than in other tumor types. Finally, mouse models expressing mutationally activated forms of Met develop a high incidence of mammary tumors, some of which exhibit basal characteristics. The present review summarizes current knowledge on the role and activity of Met in basal-like breast cancer, with a special emphasis on the correlation between this tumor subtype and the cellular hierarchy of the normal mammary gland

    Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.

    Get PDF
    We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    The discovery, distribution, and evolution of viruses associated with drosophila melanogaster

    Get PDF
    Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens, but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont—which is known to be protective against virus infections in Drosophila—we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host-virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research
    • 

    corecore