10,241 research outputs found
Disparities in Cause-Specific Cancer Survival by Census Tract Poverty Level in Idaho, U.S.
Objective. This population-based study compared cause-specific cancer survival by socioeconomic status using methods to more accurately assign cancer deaths to primary site. Methods. The current study analyzed Idaho data used in the Accuracy of Cancer Mortality Statistics Based on Death Certificates (ACM) study supplemented with additional information to measure cause-specific cancer survival by census tract poverty level. Results. The distribution of cases by primary site group differed significantly by poverty level (chi-square = 265.3, 100 df, p In the life table analyses, for 8 of 24 primary site groups investigated, and all sites combined, there was a significant gradient relating higher poverty with poorer survival. For all sites combined, the absolute difference in 5-year cause-specific survival rate was 13.6% between the lowest and highest poverty levels. Conclusions. This study shows striking disparities in cause-specific cancer survival related to the poverty level of the area a person resides in at the time of diagnosis
An intelligent tutoring system for the investigation of high performance skill acquisition
The issue of training high performance skills is of increasing concern. These skills include tasks such as driving a car, playing the piano, and flying an aircraft. Traditionally, the training of high performance skills has been accomplished through the use of expensive, high-fidelity, 3-D simulators, and/or on-the-job training using the actual equipment. Such an approach to training is quite expensive. The design, implementation, and deployment of an intelligent tutoring system developed for the purpose of studying the effectiveness of skill acquisition using lower-cost, lower-physical-fidelity, 2-D simulation. Preliminary experimental results are quite encouraging, indicating that intelligent tutoring systems are a cost-effective means of training high performance skills
Inhibitor regulation of tissue kallikrein activity in the synovial fluid of patients with rheumatoid athritis
Tissue kallikrein (TK) and 1-antitrypsin (AT)/TK complexes can be detected in SF from patients with RA if components of the fluids which interfere with the detection of TK are removed. 2-Macroglobulin (2-M) in SF was demonstrated to contain trapped proteases which were still active in amidase assays. Removal of 2-M from RA SF reduced their amidase activity. However, at least some of the remaining activity was due to TK because it was soya bean trypsin inhibitor resistant and trasylol sensitive and was partly removed by affinity chromatography on anti-TK sepharose. Removal of RF from the fluids reduced the values obtained for TK levels by ELISA. Addition of SF to human urinary kallikrein (HUK) considerably reduced the levels of TK detected suggesting the presence of a TK ELISA inhibitor in the fluids. Removal of components of >300 kDa from SF markedly reduced the TK ELISA inhibitory activity and increased the values for both the TK and l-AT/TK levels in fluids as measured by ELISA. It is considered this novel inhibitor does not bind to the active site of TK but rather binds to the site reactive with anti-TK antibodies
Data compression and regression based on local principal curves.
Frequently the predictor space of a multivariate regression problem of the type y = m(x_1, …, x_p ) + ε is intrinsically one-dimensional, or at least of far lower dimension than p. Usual modeling attempts such as the additive model y = m_1(x_1) + … + m_p (x_p ) + ε, which try to reduce the complexity of the regression problem by making additional structural assumptions, are then inefficient as they ignore the inherent structure of the predictor space and involve complicated model and variable selection stages. In a fundamentally different approach, one may consider first approximating the predictor space by a (usually nonlinear) curve passing through it, and then regressing the response only against the one-dimensional projections onto this curve. This entails the reduction from a p- to a one-dimensional regression problem.
As a tool for the compression of the predictor space we apply local principal curves. Taking things on from the results presented in Einbeck et al. (Classification – The Ubiquitous Challenge. Springer, Heidelberg, 2005, pp. 256–263), we show how local principal curves can be parametrized and how the projections are obtained. The regression step can then be carried out using any nonparametric smoother. We illustrate the technique using data from the physical sciences
Type Ia Supernovae and Accretion Induced Collapse
Using the population synthesis binary evolution code StarTrack, we present
theoretical rates and delay times of Type Ia supernovae arising from various
formation channels. These channels include binaries in which the exploding
white dwarf reaches the Chandrasekhar mass limit (DDS, SDS, and helium-rich
donor scenario) as well as the sub-Chandrasekhar mass scenario, in which a
white dwarf accretes from a helium-rich companion and explodes as a SN Ia
before reaching the Chandrasekhar mass limit. We find that using a common
envelope parameterization employing energy balance with alpha=1 and lambda=1,
the supernova rates per unit mass (born in stars) of sub-Chandrasekhar mass SNe
Ia exceed those of all other progenitor channels at epochs t=0.7 - 4 Gyr for a
burst of star formation at t=0. Additionally, the delay time distribution of
the sub-Chandrasekhar model can be divided in to two distinct evolutionary
channels: the `prompt' helium-star channel with delay times < 500 Myr, and the
`delayed' double white dwarf channel with delay times > 800 Myr spanning up to
a Hubble time. These findings are in agreement with recent
observationally-derived delay time distributions which predict that a large
number of SNe Ia have delay times < 1 Gyr, with a significant fraction having
delay times < 500 Myr. We find that the DDS channel is also able to account for
the observed rates of SNe Ia. However, detailed simulations of white dwarf
mergers have shown that most of these mergers will not lead to SNe Ia but
rather to the formation of a neutron star via accretion-induced collapse. If
this is true, our standard population synthesis model predicts that the only
progenitor channel which can account for the rates of SNe Ia is the
sub-Chandrasekhar mass scenario, and none of the other progenitors considered
can fully account for the observed rates.Comment: 6 pages, 1 figure, 1 table, to appear in proceedings for "Binary Star
Evolution: Mass Loss, Accretion and Mergers
Reduction and analysis of photometric data on Comet Halley
The discovery that periodic variations in the brightness of Comet Halley were characterized by two unrelated frequencies implies that the nucleus is in a complex state of rotation. It either nutates as a result of the random addition of small torque perturbations accumulated over many perihelion passages, or the jet activity torques are so strong that it precesses wildly at each perihelion passage. To diagnose the state of nuclear rotation, researchers began a program to acquire photometric time series of the comet as it recedes from the sun. The intention is to observe the decay of the comet's atmosphere and then, when it is unemcumbered by the light of the coma, follow the light variation of the nucleus itself. The latter will be compared with preperihelion time series and the orientation of the nucleus at the time of Vega and Giotto flybys and an accurate rotational ephemeris constructed. Halley was observed on 38 nights during 1987 and approximately 21 nights in 1988. The comet moved from 5 AU to 8.5 AU during this time. The brightness of the coma was found to rapidly decrease in 1988 as the coma and cometary activity collapses. The magnitude in April 1988 was 19 mag (visual) and it is predicted that the nucleus itself will be the major contributor to the brightness in the 1988 and 1989 season
Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene
We have measured a strictly linear pi-plasmon dispersion along the axis of
individualized single wall carbon nanotubes, which is completely different from
plasmon dispersions of graphite or bundled single wall carbon nanotubes.
Comparative ab initio studies on graphene based systems allow us to reproduce
the different dispersions. This suggests that individualized nanotubes provide
viable experimental access to collective electronic excitations of graphene,
and it validates the use of graphene to understand electronic excitations of
carbon nanotubes. In particular, the calculations reveal that local field
effects (LFE) cause a mixing of electronic transitions, including the 'Dirac
cone', resulting in the observed linear dispersion
Density-functional study of Cu atoms, monolayers, and coadsorbates on polar ZnO surfaces
The structure and electronic properties of single Cu atoms, copper monolayers
and thin copper films on the polar oxygen and zinc terminated surfaces of ZnO
are studied using periodic density-functional calculations. We find that the
binding energy of Cu atoms sensitively depends on how charge neutrality of the
polar surfaces is achieved. Bonding is very strong if the surfaces are
stabilized by an electronic mechanism which leads to partially filled surface
bands. As soon as the surface bands are filled (either by partial Cu coverage,
by coadsorbates, or by the formation of defects), the binding energy decreases
significantly. In this case, values very similar to those found for nonpolar
surfaces and for copper on finite ZnO clusters are obtained. Possible
implications of these observations concerning the growth mode of copper on
polar ZnO surfaces and their importance in catalysis are discussed.Comment: 6 pages with 2 postscript figures embedded. Uses REVTEX and epsf
macro
Manifestation of spin-charge separation in the dynamic dielectric response of one--dimensional Sr2CuO3
We have determined the dynamical dielectric response of a one-dimensional,
correlated insulator by carrying out electron energy-loss spectroscopy on
Sr2CuO3 single crystals. The observed momentum and energy dependence of the
low-energy features, which correspond to collective transitions across the gap,
are well described by an extended one-band Hubbard model with moderate nearest
neighbor Coulomb interaction strength. An exciton-like peak appears with
increasing momentum transfer. These observations provide experimental evidence
for spin-charge separation in the relevant excitations of this compound, as
theoretically expected for the one-dimensional Hubbard model.Comment: RevTex, 4 pages+2 figures, to appear in PRL (July 13
Paramagnetic Meissner effect in superconductors from self-consistent solutions of Ginzburg-Landau equations
The paramagnetic Meissner effect (PME) is observed in small superconducting
samples, and a number of controversial explanations of this effect are
proposed, but there is as yet no clear understanding of its nature. In the
present paper PME is considered on the base of the Ginzburg-Landau theory (GL).
The one-dimensional solutions are obtained in a model case of a long
superconducting cylinder for different cylinder radii R, the GL-parameters
\kappa and vorticities m. Acording to GL-theory, PME is caused by the presence
of vortices inside the sample. The superconducting current flows around the
vortex to screeen the vortex own field from the bulk of the sample. Another
current flows at the boundary to screen the external field H from entering the
sample. These screening currents flow in opposite directions and contribute
with opposite signs to the total magnetic moment (or magnetization) of the
sample. Depending on H, the total magnetization M may be either negative
(diamagnetism), or positive (paramagnetism). A very complicated saw-like
dependence M(H) (and other characteristics), which are obtained on the base of
self-consistent solutions of the GL-equations, are discussed.Comment: 6 pages, 5 figures, RevTex, submitted to Phys. Rev.
- …