69 research outputs found

    Transcriptome sequencing supports a conservation of macrophage polarization in fish

    Get PDF
    Mammalian macrophages can adopt polarization states that, depending on the exact stimuli present in their extracellular environment, can lead to very different functions. Although these different polarization states have been shown primarily for macrophages of humans and mice, it is likely that polarized macrophages with corresponding phenotypes exist across mammals. Evidence of functional conservation in macrophages from teleost fish suggests that the same, or at least comparable polarization states should also be present in teleosts. However, corresponding transcriptional profiles of marker genes have not been reported thus far. In this study we confirm that macrophages from common carp can polarize into M1- and M2 phenotypes with conserved functions and corresponding transcriptional profiles compared to mammalian macrophages. Carp M1 macrophages show increased production of nitric oxide and a transcriptional profile with increased pro-inflammatory cytokines and mediators, including il6, il12 and saa. Carp M2 macrophages show increased arginase activity and a transcriptional profile with increased anti-inflammatory mediators, including cyr61, timp2b and tgm2b. Our RNA sequencing approach allowed us to list, in an unbiased manner, markers discriminating between M1 and M2 macrophages of teleost fish. We discuss the importance of our findings for the evaluation of immunostimulants for aquaculture and for the identification of gene targets to generate transgenic zebrafish for detailed studies on M1 and M2 macrophages. Above all, we discuss the striking degree of evolutionary conservation of macrophage polarization in a lower vertebrate.Animal science

    Forearm rotation improves after corrective osteotomy in patients with symptomatic distal radius malunion

    Get PDF
    Objectives: Distal radius malunion can result in pain and functional complaints. One of the functional problems that can affect daily life is impaired forearm rotation. The primary aim of this study was to investigate the effect of corrective osteotomy for distal radius malunion on forearm rotation at 12 months after surgery. We secondarily studied the effect on grip strength, radiological measurements, and patient-reported outcome measurements (PROMs). Patients and methods: This cohort study analysed prospectively collected data of adult patients with symptomatic distal radius malunion. All patients underwent corrective osteotomy for malunion and were followed for 1 year. We measured forearm rotation (pronation and supination) and grip strength and analysed radiographs. PROMs consisted of the Patient-Rated Hand/Wrist Evaluation (PRWHE) questionnaire, Visual Analogue Scale for pain, and satisfaction with hand function. Results:Preoperative total forearm rotation was 112° (SD: 34°), of which supination of 49° (SD: 25°) was more impaired than pronation of 63° (SD: 17°). Twelve months after surgery, an unpaired Student's t-test showed a significant improvement of total forearm rotation to 142° (SD: 17°) (p &lt; 0.05). Pronation improved to 72° (SD: 10°), and supination to 69° (SD: 13°) (p &lt; 0.05). Grip strength, PROMs, as well as inclination and volar tilt on radiographs improved significantly during the first year after surgery (p &lt; 0.05). Conclusion: In patients with reduced forearm rotation due to distal radius malunion, corrective osteotomy is an effective treatment that significantly improves forearm rotation. In addition, this intervention improves grip strength, the PRWHE-score, pain, and satisfaction with hand function.</p

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Cellulose aerogels: Highly porous, ultra-lightweight materials

    No full text
    • …
    corecore