84 research outputs found

    Hydrogen penetration into titanium from environment in different states

    Get PDF
    In this paper, the accumulation of hydrogen in titanium from media of different aggregate states is considered, since the accumulation of hydrogen in structural and functional materials, which ultimately can lead to the destruction of structures, essentially depends on the environments in which these structures operate. Obtained: electrolytic and plasma saturation is characterized by hydrogen entrapment by low-temperature traps with weak binding energy (point defects and their complexes, vacancies and their complexes, etc. The method of Siwerst is characterized by capture of high-temperature traps (microcracks of microcracks, intergranular boundaries, etc.)

    Integration of cell of origin into the clinical CNS International Prognostic Index improves CNS relapse prediction in DLBCL

    Get PDF
    Central nervous system (CNS) relapse carries a poor prognosis in diffuse large B-cell lymphoma (DLBCL). Integrating biomarkers into the CNS-International Prognostic Index (CNS-IPI) risk model may improve identification of patients at high risk for developing secondary CNS disease. CNS relapse was analyzed in 1418 DLBCL patients treated with obinutuzumab or rituximab plus cyclophosphamide, doxorubicin, vincristine, prednisone chemotherapy in the phase 3 GOYA study. Cell of origin (COO) was assessed using gene-expression profiling. BCL2 and MYC protein expression was analyzed by immunohistochemistry. The impact of CNS-IPI, COO, and BCL2/MYC dual-expression status on CNS relapse was assessed using a multivariate Cox regression model (data available in n = 1418, n = 933, and n = 688, respectively). High CNS-IPI score (hazard ratio [HR], 4.0; 95% confidence interval [CI], 1.3-12.3; P = .02) and activated B-cell\u2012like (ABC) (HR, 5.2; 95% CI, 2.1-12.9; P = .0004) or unclassified COO subtypes (HR, 4.2; 95% CI, 1.5-11.7; P = .006) were independently associated with CNS relapse. BCL2/MYC dual-expression status did not impact CNS relapse risk. Three risk subgroups were identified based on the presence of high CNS-IPI score and/or ABC/unclassified COO (CNS-IPI-C model): low risk (no risk factors, n = 450 [48.2%]), intermediate risk (1 factor, n = 408 [43.7%]), and high risk (both factors, n = 75 [8.0%]). Two-year CNS relapse rates were 0.5%, 4.4%, and 15.2% in the respective risk subgroups. Combining high CNS-IPI and ABC/unclassified COO improved CNS relapse prediction and identified a patient subgroup at high risk for developing CNS relapse. The study was registered at www.clinicaltrials.gov as #NCT01287741

    Restoration of contact inhibition in human glioblastoma cell lines after MIF knockdown

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of the role of the cytokine macrophage-migration-inhibitory-factor (MIF) in malignant tumors have revealed its stimulating influence on cell-cycle progression, angiogenesis and anti-apoptosis.</p> <p>Results</p> <p>Here we show that <it>in vitro </it>targeting MIF in cultures of human malignant glioblastoma cells by either antisense plasmid introduction or anti-MIF antibody treatment reduced the growth rates of tumor cells. Of note is the marked decrease of proliferation under confluent and over-confluent conditions, implying a role of MIF in overcoming contact inhibition. Several proteins involved in contact inhibition including p27, p21, p53 and CEBPalpha are upregulated in the MIF antisense clones indicating a restoration of contact inhibition in the tumor cells. Correspondingly, we observed a marked increase in MIF mRNA and protein content under higher cell densities in LN18 cells. Furthermore, we showed the relevance of the enzymatic active site of MIF for the proliferation of glioblastoma cells by using the MIF-tautomerase inhibitor ISO-1.</p> <p>Conclusion</p> <p>Our study adds another puzzle stone to the role of MIF in tumor growth and progression by showing the importance of MIF for overcoming contact inhibition.</p

    A model for predicting effect of treatment on progression-free survival using MRD as a surrogate end point in CLL

    Get PDF
    Our objective was to evaluate minimal residual disease (MRD) at the end of induction treatment with chemoimmunotherapy as a surrogate end point for progression-free survival (PFS) in chronic lymphocytic leukemia (CLL) based on 3 randomized, phase 3 clinical trials (ClinicalTrials.gov identifiers NCT00281918, NCT00769522, and NCT02053610). MRD was measured in peripheral blood (PB) from treatment-naïve patients in the CLL8, CLL10, and CLL11 clinical trials, and quantified by 4-color flow cytometry or allele-specific oligonucleotide real-time quantitative polymerase chain reaction. A meta-regression model was developed to predict treatment effect on PFS using treatment effect on PB-MRD. PB-MRD levels were measured in 393, 337, and 474 patients from CLL8, CLL10, and CLL11, respectively. The model demonstrated a statistically significant relationship between treatment effect on PB-MRD and treatment effect on PFS. As the difference between treatment arms in PB-MRD response rates increased, a reduction in the risk of progression or death was observed; for each unit increase in the (log) ratio of MRD2 rates between arms, the log of the PFS hazard ratio decreased by 20.188 (95% confidence interval, 20.321 to 20.055; P 5 .008). External model validation on the REACH trial and sensitivity analyses confirm the robustness and applicability of the surrogacy model. Our surrogacy model supports use of PB-MRD as a primary end point in randomized clinical trials of chemoimmunotherapy in CLL. Additional CLL trial data are required to establish a more precise quantitative relationship between MRD and PFS, and to support general applicability of MRD surrogacy for PFS across diverse patient characteristics, treatment regimens, and different treatment mechanisms of action

    Identification of macrophage migration inhibitory factor and human neutrophil peptides 1–3 as potential biomarkers for gastric cancer

    Get PDF
    Background: Proteomic methods have the potential to meet the urgent need for better cancer biomarkers. We have used a range of proteomic analyses of serum and tissue from gastric cancer patients and relevant controls to discover biomarkers for gastric cancer. Methods: Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI) and antibody arrays were used to compare protein expression in 21 pairs of gastric cancer tissue and adjacent normal mucosa and serum from 51 gastric cancer patients and 29 patients with benign gastric diseases. Expression differences were confirmed by enzyme-linked immunosorbent assay. Results: Tissue analysis shows human neutrophil peptides 1–3 (HNPs 1–3) elevated 10-fold (P=0.001) in gastric cancer relative to adjacent normal mucosa. Macrophage migration inhibitory factor (MIF) was increased five-fold (P=1.84 × 10−7) in the serum of gastric cancer patients relative to individuals with benign gastric disease. The large increase in MIF concentration in serum gives an area under the receiver operating characteristic curve of 0.85. Conclusions: Proteomic analyses of serum and tissue indicate that HNPs 1–3 and MIF have potential as biomarkers for gastric cancer. In particular MIF may be useful, either alone or in combination with other markers, for diagnosing and monitoring gastric cancer

    Involvement of the Cytokine MIF in the Snail Host Immune Response to the Parasite Schistosoma mansoni

    Get PDF
    We have identified and characterized a Macrophage Migration Inhibitory Factor (MIF) family member in the Lophotrochozoan invertebrate, Biomphalaria glabrata, the snail intermediate host of the human blood fluke Schistosoma mansoni. In mammals, MIF is a widely expressed pleiotropic cytokine with potent pro-inflammatory properties that controls cell functions such as gene expression, proliferation or apoptosis. Here we show that the MIF protein from B. glabrata (BgMIF) is expressed in circulating immune defense cells (hemocytes) of the snail as well as in the B. glabrata embryonic (Bge) cell line that has hemocyte-like features. Recombinant BgMIF (rBgMIF) induced cell proliferation and inhibited NO-dependent p53-mediated apoptosis in Bge cells. Moreover, knock-down of BgMIF expression in Bge cells interfered with the in vitro encapsulation of S. mansoni sporocysts. Furthermore, the in vivo knock-down of BgMIF prevented the changes in circulating hemocyte populations that occur in response to an infection by S. mansoni miracidia and led to a significant increase in the parasite burden of the snails. These results provide the first functional evidence that a MIF ortholog is involved in an invertebrate immune response towards a parasitic infection and highlight the importance of cytokines in invertebrate-parasite interactions
    corecore