Universita degli Studi di Trieste

ar I s Archiviodellaricerca—postprint

CLINICAL TRIALS AND OBSERVATIONS
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Central nervous system (CNS) relapse carries a poor prognosis in diffuse large B-cell
. lymphoma (DLBCL). Integrating biomarkers into the CNS-International Prognostic Index

® High CNS-IPI score . . . e e . . . .
and ABC/unclassified (CNS-IPI) risk model may improve identification of patients at high risk for developing
COO subtypes were secondary CNS disease. CNS relapse was analyzed in 1418 DLBCL patients treated with
independent risk obinutuzumab or rituximab plus cyclophosphamide, doxorubicin, vincristine, prednisone

factors for CNS

relapse in DLBCL chemotherapy in the phase 3 GOYA study. Cell of origin (COO) was assessed using gene-

expression profiling. BCL2 and MYC protein expression was analyzed by immunohisto-

© Combining CNS-IPI chemistry. The impact of CNS-IPI, COO, and BCL2/MYC dual-expression status on CNS
is:‘:';i::: coo relapse was assessed using a multivariate Cox regression model (data available inn = 1418,
identification of n = 933, and n = 688, respectively). High CNS-IPI score (hazard ratio [HR], 4.0; 95%
DLBCL patients with confidence interval [Cl], 1.3-12.3; P = .02) and activated B-cell-like (ABC) (HR, 5.2; 95% ClI,
different CNS 2.1-12.9; P = .0004) or unclassified COO subtypes (HR, 4.2; 95% Cl, 1.5-11.7; P = .006)

relapse risks.

/) were independently associated with CNS relapse. BCL2/MYC dual-expression status did

not impact CNS relapse risk. Three risk subgroups were identified based on the presence
of high CNS-IPI score and/or ABC/unclassified COO (CNS-IPI-C model): low risk (no risk factors, n = 450 [48.2%)]), in-
termediate risk (1 factor, n = 408 [43.7%)]), and high risk (both factors, n = 75 [8.0%)]). Two-year CNS relapse rates were
0.5%, 4.4%, and 15.2% in the respective risk subgroups. Combining high CNS-IPI and ABC/unclassified COO improved
CNS relapse prediction and identified a patient subgroup at high risk for developing CNS relapse. The study was
registered at www.clinicaltrials.gov as #NCT01287741. (Blood. 2019;133(9):919-926)

Introduction Reliable identification of patients at higher risk of developing
secondary CNS disease is needed. Several clinical prognostic
models have been proposed.’?® The CNS International Prog-
nostic Index (CNS-IPI) model is the most recently developed!
and was built using a large dataset of patients with aggressive

. N . . B-cell lymphomas (80% DLBCL), who were enrolled in studies
and prednisone (CHOP) significantly improves outcomes in ) i
DLBCL patients®#; however, its impact on the incidence of from the German High-Grade Non-Hodgkin Lymphoma Study
secondary CNS disease remains unclear, with some studies dem- Group and MabThera Intemational Trial, and it was successfully
onstrating reduced CNS relapse risk in DLBCL patients treated validated in population-based DLBCL cohorts.?'® The model
with R-CHOP vs CHOP># and others showing similar CNS relapse includes the International Prognostic Index (IPI) risk factors
rates.” plus involvement of the kidneys and/or adrenal glands.

Central nervous system (CNS) relapse is a rare, usually fatal,
event in diffuse large B-cell lymphoma (DLBCL); median overall
survival (OS) after its occurrence is 3.5 to 7 months."? Addition
of rituximab (R) to cyclophosphamide, doxorubicin, vincristine,




Implementation of biomarkers into the CNS-IPI model may im-
prove identification of patients with a high risk for CNS relapse.”

DLBCL represents a biologically heterogeneous disease with
germinal center B-cell-like (GCB) and activated B-cell-like (ABC)
subtypes, each arising from different nonmalignant lymphoid
counterparts.’” DLBCL cell-of-origin (COO) subtypes harbor
specific genetic abnormalities'>'4; for example, GCB DLBCL is
characterized by frequent translocations of the BCL2 gene and
loss of PTEN, whereas ABC DLBCL is characterized by biallelic
loss of the CDKN2A gene, which encodes proteins implicated
in regulation of the cell cycle (p16INK4A) and p53 (ARF) and
chronically active B-cell receptor and NF-«B signaling.’>'>'8 The
impact of COO subtype on prognosis has been confirmed
in several studies, with the ABC subtype predicting worse
outcomes.’?® ABC DLBCL was also shown to be the most
common COO subtype in primary CNS lymphomas.?' Data are
limited on the association of COO subtype with the risk of
secondary CNS disease in DLBCL, with only 1 retrospective
study published to date. Savage et al showed that ABC (or non-
GCB) DLBCL is associated with higher CNS relapse risk.” In
a multivariate analysis including COO subtype, dual-expression
status of BCL2 and MYC proteins, and CNS-IPI, only high CNS-
IPI score and BCL2/MYC dual expression were significantly as-
sociated with CNS relapse risk.”

GOYA is a multicenter randomized phase 3 trial (NCT01287741)
investigating the efficacy and safety of obinutuzumab (G) or R
plus CHOP in patients with previously untreated DLBCL. After
a median observation time of 29.0 months, there were no sig-
nificant differences between G-CHOP and R-CHOP with regard
to progression-free survival (PFS) and OS??; 3-year investigator-
assessed PFS rates were 70% and 67%, respectively. Patients
with GCB DLBCL demonstrated better outcomes than those with
ABC or unclassified DLBCL, with 3-year PFS rates of 75%, 59%,
and 63%, respectively. Using data from GOYA, we aimed to
evaluate the impact of distinct COO subtypes and dual ex-
pression of BCL2 and MYC proteins on CNS relapse risk.

Methods

Patients, treatment, and clinical assessments

The GOYA study design is described in full elsewhere.?? Patients
had previously untreated histologically documented CD20*
DLBCL and an IPI score = 2, an IPI score of 1 (if age = 60 years,
with or without bulky disease), or an IPI score of O (with bulky
disease [1 lesion = 7.5 cm)]). Patients with CNS involvement at
diagnosis were excluded.

Patients received 8 21-day cycles of G or R plus 6 to 8 cycles of
CHOP chemotherapy. CNS prophylaxis with intrathecal chemo-
therapy was recommended to be given according to institutional
practice. No systemic CNS-directed prophylaxis was administered.

Staging investigations included computed tomography scan and
bone marrow biopsy. Baseline lumbar puncture was recommended
in patients with high-risk disease or with =1 of the following sites
of involvement: paranasal sinuses, testicular, parameningeal, peri-
orbital, paravertebral, or bone marrow. CNS relapse was diagnosed
according to institutional practice via imaging (magnetic resonance
imaging or computed tomography scan) and/or the presence of

malignant cells in cerebrospinal fluid or affected tissue. The
protocol was approved by the ethics committees of partici-
pating centers. All patients provided written informed consent.

COO, immunohistochemical, and FISH analyses
COO classification was performed by a central laboratory based
on gene-expression profiling using the NanoString Lymphoma
Subtyping Research-Use-Only assay (NanoString Technologies,
Seattle, WA). Immunohistochemical analysis using BCL2 (clone
124) and MYC (clone Y69) assays (Ventana Medical Systems,
Tucson, AZ) was conducted on slides cut from diagnostic
formalin-fixed paraffin-embedded (FFPE) blocks. Cut slide sta-
bility was not considered for selection of tissue sections for
analysis. BCL2 protein expression was assessed according to the
percentage of tumor cells with BCL2 expression and staining
intensity; positivity was defined as moderate or strong staining
in =50% of tumor cells. MYC positivity was defined as expression
in =40% of tumor cells. Immunohistochemical analyses were
conducted in a central laboratory (Hematogenix Laboratory
Services, Chicago, IL). Fluorescence in situ hybridization (FISH)
was performed in a central laboratory (HistoGeneX, Antwerp,
Belgium) on the diagnostic FFPE tissue sections using Vysis LS|
Dual Color, Break Apart probes for BCL2 and MYC rearrange-
ment detection, as previously described.??

Targeted next-generation sequencing

Genomic DNA was extracted from diagnostic FFPE tissue sec-
tions containing = 20% tumor cells. Samples were submitted to
a central laboratory (Foundation Medicine, Cambridge, MA) for
next-generation sequencing-based genomic profiling. Adaptor-
ligated DNA underwent hybrid capture for all coding exons
of 465 cancer-related genes (FoundationOne Heme platform).
Captured libraries were sequenced to a median exon coverage
depth > 500X (DNA) using lllumina sequencing, and resultant
sequences were analyzed for base substitutions, small insertions
and deletions, copy number alterations (focal amplifications and
homozygous deletions), and gene fusions/rearrangements, as
previously described.?* Frequent germline variants from the
1000 Genomes Project (dbSNP142) were removed. To maxi-
mize mutation-detection accuracy (sensitivity and specificity) in
impure clinical specimens, the test was previously optimized and
validated to detect base substitutions at =5% mutant allele fre-
quency, insertions and deletions with =10% mutant allele fre-
quency with =99% accuracy, and fusions occurring within baited
introns/exons with >99% sensitivity.?* Known confirmed somatic
alterations deposited in the Catalogue Of Somatic Mutations In
Cancer (COSMIC vé62) are called at allele frequencies = 1%.2> Next-
generation sequencing-based genomic profiling was per-
formed in a subset of patients (617 of 1418) who provided an
optional written informed consent; data that passed the quality
check criteria were evaluable in 499 of 617 patients.

Statistical analysis

The event-specific cumulative incidence of CNS relapse and
time to CNS relapse were estimated with Kaplan-Meier statistics.
The impact of variables of interest (CNS-IPI, COO, BCL2/MYC
dual-expression status, CDKN2A alteration, and the GOYA study
randomization stratification factors [number of planned che-
motherapy cycles, geographical region]) on CNS relapse was
assessed using univariate and multivariate Cox regression
models. In these models, the end point of interest was time to
CNS relapse, defined through the manual review of patients with



Table 1. Key baseline clinical characteristics (CNS-IPI risk factors, CNS-IPI score) of patients who developed CNS relapse
compared with patients with no CNS relapse and the overall GOYA study population

Characteristic CNS relapse (n = 38) No CNS relapse (n = 1380) All patients (N = 1418)
Age, median (range), y 66.5 (21-81) 61.0 (18-86) 62.0 (18-86)
<60 13 (34.2) 591 (42.8) 604 (42.6)
=60 25 (65.8) 789 (57.2) 814 (57.4)
ECOG PS

0-1 31 (81.6) 1200 (87.0) 1231 (86.9)

2-3 7 (18.4) 179 (13.0) 186 (13.1)
Ann Arbor stage

lorll 4 (10.5) 337 (24.4) 341 (24.1)

Il or IV 34 (89.5) 1042 (75.6) 1076 (75.9)
Elevated LDH 26 (68.4) 790 (57.5) 816 (57.7)
Extranodal sites, n

0-1 15 (39.5) 900 (65.2) 915 (64.5)

>1 23 (60.5) 480 (34.8) 503 (35.5)
Involvement of kidneys and/or adrenal glands 11 (28.9) 80 (5.8) 91 (6.4)
CNS-IPI

Low (0-1) 4 (10.5) 275 (20.0) 279 (19.7)

Intermediate (2-3) 16 (42.1) 878 (63.6) 894 (63.0)

High (4-6) 18 (47.4) 227 (16.5) 245 (17.3)

Data are presented as n (%), unless otherwise noted. Data for Eastern Cooperative Oncology Group performance status (ECOG PS) and Ann Arbor Stage were not available in 1 case, and
data on lactate dehydrogenase (LDH) were not available in 5 cases. Differences = 10% between CNS relapse/no relapse groups are highlighted in bold type.

disease progression or a death event at the time of the pri-
mary analysis cutoff (29 April 2016). The significance level of
5% was used consistently; all tests are 2-sided. No multiplicity
adjustment was performed in order to avoid loss of power
due to the low number of events, which is a structural limitation
of such rare phenomena. R statistical software package ver-
sion 3.4.0,%¢ together with RStudio version 1.0.153,%7 was
used for all analyses.

Results

Overall, 1418 DLBCL patients, randomized and treated with
G-CHOP (n = 706) or R-CHOP (n = 712) in GOYA, were analyzed
for CNS relapse occurrence. Baseline characteristics are shown
in Table 1. According to CNS-IPI score, 279 (19.7%) patients
were categorized as being at low risk (0-1), 894 (63.0%) patients
were categorized as being at intermediate risk (2-3), and
245 (17.3%) patients were categorized as being at high risk (4-6)
for developing CNS relapse. COO was available for 933 patients,

of whom 540 (57.9%), 243 (26.0%), and 150 (16.1%) were classified

as having GCB, ABC, and unclassified DLBCL, respectively. Both
COO and BCL2/MYC protein expression were available in

688 patients; 295 (42.9%) were BCL2/MYC dual expressers.
More patients with ABC DLBCL were BCL2/MYC dual expressers

compared with GCB or unclassified DLBCL (136 [70.5%] vs
117 [30.7%] vs 42 [36.8%)], respectively; Table 2).

Incidence and outcome of CNS relapse

After a median observation of 29.0 months (interquartile range,
24.5-37.4), 38 (2.7%) of the 1418 patients developed CNS

relapse (17 patients treated with chemotherapy only, 6 treated
with chemotherapy and radiotherapy, 4 treated with radio-
therapy only, é received no treatment; data not available in
5 patients); 37 of these had radiological signs of CNS relapse
and/or infiltrated CSF. In 1 patient, CNS relapse (intraocular)
was diagnosed via cytological evaluation of corpus vitreum. Most
CNS relapses were localized in the brain parenchyma (paren-
chymal only, n = 27 [71.1%)]; leptomeningeal only, n = 6 [15.8%];
parenchymal and leptomeningeal, n = 3 [7.9%]; intraocular,
n = 1[2.6%)], and data not available, n = 1 [2.6%]). Median time
to CNS relapse was 8.5 months (range, 0.9-43.5). The majority
(34 [89.5%]) of CNS relapses occurred within 2 years of ran-
domization. The 2-year CNS relapse rate for the entire cohort
was 2.8%. Twenty-four (63%) of 38 patients with CNS relapse
were dead at the time of the analysis; median survival after CNS
relapse was 5.9 months. According to CNS-IPI, 10.5% of patients
with CNS relapse were categorized as low risk, 42.1% were
categorized as intermediate risk, and 47.4% were categorized
as high risk. Two-year CNS relapse rates were 0.8% (95% con-
fidence interval [Cl], 0.0-1.9), 1.9% (95% ClI, 0.9-2.9), and
8.9% (95% Cl, 4.7-12.9) for the low-, intermediate-, and high-risk
CNS-IPI subgroups, respectively (Figure 1A).

Treatment arm and prophylaxis with intrathecal
chemotherapy and CNS relapse risk

The number of CNS relapses was similar in the G-CHOP and
R-CHOP arms (20 vs 18, respectively), with no impact of treat-
ment arm on the incidence of CNS relapse (hazard ratio [HR],
1.13; 95% Cl, 0.60-2.15; P = .70). Overall, 140 (9.9%) of 1418
patients received intrathecal methotrexate or cytarabine or



Table 2. Key clinical and biomarker characteristics of patients with distinct COO subtypes: GCB, unclassified, and

ABC DLBCL
Characteristic GCB (n = 540) Unclassified (n = 150) ABC (n = 243)
Age, median (range), y 62.5 (18-83) 62.0 (21-83) 64.0 (29-86)
<60 228 (42.2) 59 (39.3) 70 (28.8)
=60 312 (57.8) 91 (60.7) 173 (71.2)
ECOG PS
0-1 475 (88.1) 126 (84.0) 209 (86.0)
2-3 64 (11.9) 24 (16.0) 34 (14.0)
Ann Arbor stage
lorll 146 (27.0) 34 (22.7) 52 (21.4)
Il or IV 394 (73.0) 116 (77.3) 191 (78.6)
Elevated LDH 308 (57.1) 76 (50.7) 169 (70.4)
Extranodal sites, n
0-1 355 (65.7) 95 (63.3) 158 (65.0)
>1 185 (34.3) 55 (36.7 85 (35.0)
Involvement of kidneys and/or adrenal glands 36 (6.7) 9 (6.0) 13 (5.3)
CNS-IPI
Low (0-1) 115 (21.3) 29 (19.3) 28 (11.5)
Intermediate (2-3) 335 (62.0) 97 (64.7) 164 (67.5)
High (4-6) 90 (16.7) 24 (16.0) 51 (21.0)
BCL2/MYC dual expression n = 381 n=114 n =193
Nodual expressers 264 (69.3) 72 (63.2) 57 (29.5)
Dual expressers 117 (30.7) 42 (36.8) 136 (70.5)

Data are presented as n (%), unless otherwise noted. Data for ECOG PS were not available in 1 case, and data on LDH were not available in 3 cases.

a combination of both as CNS relapse prophylaxis. Within the
low-, intermediate-, and high-risk CNS-IPI groups, 16 (5.7%) of
279, 94 (10.5%) of 894, and 30 (12.2%) of 245 patients received
intrathecal CNS relapse prophylaxis, respectively (supplemental
Table 1, available on the Blood Web site). Two-year CNS relapse
rates were not different between patients who did or did not
receive CNS relapse prophylaxis (2.8% vs 2.6%). Similarly, the
number of CNS relapses was not different in patients treated or
not with prophylaxis in any of the CNS-IPI categories (0.0% vs
0.9%, 1.3% vs 2.0%, and 8.5% vs 9.0% for the low-, intermediate-,
and high-risk CNS-IP| subgroups, respectively; supplemental
Table 1).

COO and BCL2/MYC dual-expression status and
CNS relapse risk

In patients with COO available (n = 933, 30 CNS-relapse events;
supplemental Table 2), 2-year CNS relapse rates were 1.4% (95%
Cl, 0.0-3.2), 2.2% (95% Cl, 0.9-3.5), and 9.6% (95% Cl, 4.5-14.5)
for the low-, intermediate-, and high-risk CNS-IPI subgroups,
respectively (Figure 1B). On univariate analysis, patients with
ABC and unclassified DLBCL had significantly higher CNS re-
lapse risk than those with GCB DLBCL (HR, 5.2; 95% Cl, 2.1-12.7;
P =.0003; and HR, 4.2; 95% Cl, 1.5-11.7; P = .005; respectively).
Two-year CNS relapse rates were 6.9%, 4.8%, and 1.3% for
patients with ABC, unclassified, and GCB DLBCL, respectively.
There was no significant association between BCL2/MYC dual
expression and the risk for CNS relapse on univariate analysis
(HR, 1.5; 95% ClI, 0.7-3.5; P = .3196; 2-year CNS relapse rate:

dual-expressers 4.0% vs nondual expressers 2.2%; n = 688). In
a multivariate analysis of the COO-available population
(n = 933), ABC subtype (HR, 5.2; 95% ClI, 2.1-12.9; P = .0004),
unclassified COO subtype (HR, 4.2; 95% Cl, 1.5-11.7; P = .006),
and high CNS-IPI (HR, 4.0; 95% Cl, 1.3-12.3; P = .02) were
associated with greater CNS relapse risk (Table 3). In a multi-
variate analysis of the population with COO and BCL2/MYC
dual-expression status available (n = 688, 22 CNS-relapse
events; supplemental Table 2), there was no impact of BCL2/
MYC dual expression (HR, 0.8; 95% ClI, 0.3-2.1; P = .69) on CNS
relapse risk, whereas the ABC and unclassified COO subtypes
remained significantly associated with higher CNS relapse risk
(Table 4). In this population, high CNS-IPI score was not sig-
nificantly associated with CNS relapse risk, although a trend for
greater risk was observed (HR, 2.8; 95% Cl, 0.8-9.4; P = .10).

Overall, 560 (39.5%) of 1418 patients had FISH results available.
Twenty patients (3.6%) harbored both BCL2 and MYC trans-
locations, of whom only 1 patient developed CNS relapse (FISH
data were not included in the statistical analysis because of the
low number of CNS relapses within the double-hit DLBCL).

CNS-IPl and COO were combined (1 point for high CNS-IPI, 1 point
for ABC or unclassified COQO) to create a modified risk-stratification
model, CNS-IPI-C. Three CNS-IPI-C subgroups were identified
as having low (no risk factor, n = 450 [48.2%)), intermediate
(1 risk factor, n = 408 [43.7%)]), and high (2 risk factors, n = 75
[8.0%]) CNS relapse risk. The 2-year CNS relapse rates were



Figure 1. Risk for CNS relapse by CNS-IPI categories.
(A) Overall GOYA study population (N = 1418); (B) pop-
ulation with COO data available (n = 933). EoT, end of
treatment.
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0.5% (95% Cl,0.0-1.3), 4.4% (95% Cl, 2.2-6.6), and 15.2% (95% ClI,
5.4-24.0), respectively, resulting in a 22-fold higher risk for CNS
relapse in the high- vs low-risk groups (Figure 2; supplemental
Table 3).

Mutational profile

Mutational profiles were available in 499 of 1418 patients (12 of
38 patients with CNS relapse; 487 of 1380 without CNS relapse;
supplemental Table 2). A detailed description of all gene alter-
ations for the patients with CNS relapse is listed in supplemental
Table 4. CDKN2A was the most frequently (8 of 12; 66.6%)
altered gene in patients who developed CNS relapse, with 7 cases
having homozygous deletion of CDKN2A and 1 case harboring
nonsynonymous CDKN2A mutation; in the population of patients
without CNS relapse, the prevalence of CDKN2A gene alterations
was 21.6% (105 of 487). On multivariate analysis, CDKN2A gene
alterations were associated with higher risk for CNS relapse (HR,
7.2; 95% Cl, 2.1-25.0; P = .002), independent of clinical factors.
The impact of CDKN2A gene alterations on CNS relapse risk was
weakened after inclusion of COO in the model (HR, 3.6; 95% ClI,
0.93-14.0; P = .064). Alterations of genes known to deregulate
NF-kB signaling were also observed, such as mutations of MYD8S8,

which were found in 5 (42%) of 12 cases compared with 78 (16.0%)
of 487 cases in the cohort with no CNS relapse. Three of the 5
patients with MYD88 mutation had simultaneous CD79B mutation.

Discussion

The current analysis of GOYA evaluated risk factors associated
with CNS relapse in newly diagnosed DLBCL patients treated
with anti-CD20-based immunochemotherapy (R-CHOP or G-CHOP).
We found no difference in CNS relapse risk between R and G, with
the incidence of CNS relapse similar in both treatment arms and
consistent with the literature.

With these data, we have provided an independent validation of
the CNS-IPI prognostic model." Patients with high CNS-IPI scores
had significantly higher risk for CNS relapse than did those with
intermediate or low CNS-IPI scores. High CNS-IPI score was also an
independent risk factor for CNS relapse on multivariate analysis.
The 2-year CNS relapse rate for the high-risk CNS-IPI subgroup in
GOYA (8.9%) was consistent with previous data from Schmitz
et al (10.2%)." No significant difference in the incidence of CNS
relapse was observed between the intermediate- and low-risk




Table 3. Results of multivariate Cox regression analysis
on factors associated with CNS relapse in the COO-
available population (n = 933)

CNS-IPI intermediate (vs low) 0.88 0.29-2.74 .8312
CNS-IPI high (vs low) 3.97 1.28-12.33 .0172
ABC COO (vs GCB) 5.18 2.09-12.87 .0004
Unclassified COO (vs GCB) 4.18 1.50-11.66 .0062

CNS relapses, n = 30. Factors that were significantly associated with greater CNS relapse
risk are highlighted in bold.

*Adjusted for study randomization stratification factors (number of planned chemotherapy
cycles, geographic region).

CNS-IPI groups. This may be due to differences in baseline patient
characteristics in the German High-Grade Non-Hodgkin Lym-
phoma Study Group and MabThera International Trial (testing
cohort for CNS-IPI building) and GOYA study cohorts.” In the
current study, we confirmed that CNS-IPI is a valuable clinical tool
for identification of DLBCL patients with high CNS relapse risk.

Most primary DLBCLs of the CNS resemble the ABC subtype,
suggesting that this biological subtype may be prone to CNS
infiltration.?' In the current study, patients with ABC and un-
classified DLBCL had significantly higher CNS relapse risk
compared with those with GCB DLBCL, and, in the multivariate
analysis, COO and a high CNS-IPI score were shown to be in-
dependent risk factors for CNS relapse. Previous data from
Savage et al showed that BCL2/MYC dual expression is associ-
ated with a higher probability of CNS relapse.” Given the asso-
ciation of the ABC subtype with dual expression of BCL2 and MYC
proteins, we analyzed whether the higher risk of CNS relapse, at
least in patients with ABC DLBCL, is related to the high prevalence
of BCL2/MYC dual expression. Surprisingly, we did not observe
a higher incidence of CNS relapse in BCL2/MYC dual expressers
compared with nondual expressers in univariate or multivariate
analyses, which may be due to the higher prevalence of BCL2/
MYC dual expression (driven by a high rate of MYC positivity) in
the GOYA study compared with the population examined by
Savage et al (42.1% vs 29.7%, respectively).”?® The reason for the
high rate of MYC positivity detected in the GOYA study is not
entirely clear. One possible explanation is that the proportion of
patients enrolled with low IPI scores (or low CNS-IPI) was relatively
low, and, therefore, there was a high proportion of high-risk
patients who are more likely to be BCL2/MYC dual expressers.
Larger studies may provide further insight.

Primary CNS lymphomas frequently, if not uniformly, exhibit
biallelic loss of CDKN2A, resulting in cell cycle and p53 pathway
deregulation, or mutations in MYD88 and CD79B, thereby
deregulating NF-kB and B-cell receptor signaling.?'283" Al-
though data on the mutational profile were only available for
a limited number of patients, CDKNZ2A loss and mutation of
MYD88 were the most commonly observed alterations in
patients with CNS relapse. In the multivariate analysis, CDKN2A
loss was associated with a higher risk for CNS relapse, in-
dependent of clinical factors. However, the impact of CDKN2A
loss on the risk of CNS relapse was weaker in a model that
included COO, probably due to the association of CDKNZ2A

alterations with the ABC subtype, which has been demon-
strated in GOYA, as well as in other studies.32:33 Because of the
limited number of patients with CNS relapse and mutational
profile data available in the GOYA study, further studies are
needed to confirm our hypothesis and to explore the impact of
specific gene alterations on the risk of CNS relapse, especially
in the context of particular COO subtypes.

Because ABC/unclassified COO subtypes and high CNS-IPI score
were independent risk factors for CNS relapse, we combined both
factors to improve the risk-stratification ability of CNS-IPI, resulting
in a modified CNS-IPI-C model. CNS-IPI-C allowed the identifi-
cation of 3 subgroups with different 2-year CNS relapse risks. This
incorporation of biomarkers into the CNS-IPI-C model improved
the discrimination of subgroups with a very low and high 2-year
CNS relapse risk compared with the CNS-IPI model (2-year relapse
rate in low- and high-risk subgroups 0.5% vs 1.4% and 15.2% vs
9.6%, respectively). This could help to identify patients who should
undergo a more comprehensive examination of the CNS to ex-
clude asymptomatic CNS lymphoma involvement. It may also
identify patients who could potentially benefit from treatment with
effective prophylaxis to reduce CNS relapse risk.3*3 Last, but not
least, CNS-IPI-C identifies a large subgroup of patients with a very
low risk for CNS relapse who could be spared invasive diagnostic
and prophylactic interventions. However, it must be noted that
CNS-IPI-C needs to be validated in an independent cohort of
DLBCL patients before its potential clinical use.

There is growing evidence that CNS prophylaxis with intrathecal
methotrexate is not sufficient to prevent CNS relapse.>*¢ Some trials
indicate that high-dose IV methotrexate (3 g/m? can prevent CNS
relapse®; however, treatment can be associated with significant
toxicity, and an acceptable risk-benefit ratio should be carefully
considered. Overall, 9.9% of patients were treated with prophylactic
intrathecal chemotherapy in GOYA. We did not observe a signifi-
cant difference in the incidence of CNS relapse in patients who did
or did not receive intrathecal chemotherapy, either in the entire
cohort or in the different risk groups according to CNS-IPI. However,
it must be noted that GOYA was not designed to assess the impact
of CNS prophylaxis on CNS relapse risk. CNS prophylaxis was in-
dicated and administered upon investigator decision, based on

Table 4. Results of multivariate Cox regression analysis
on factors associated with CNS relapse in the COO
and BCL2/MYC dual-expression status—available
population (n = 688)

Factor HR* 95% ClI P

CNS-IPI intermediate (vs low) 0.75 0.23-2.45 6378

CNS-IPI high (vs low) 276 0.81-9.42 .1042

ABC COO (vs GCB) 4.78 1.49-15.29 .0084

Unclassified COO (vs GCB) 4.24 1.32-13.61 .0151

BCL2/MYC dual expresser 0.83 0.34-2.06 6931
(vs nondual expresser)

CNS relapses, n = 22. Factors that were significantly associated with greater CNS relapse
risk are highlighted in bold.

*Adjusted for study randomization stratification factors (number of planned chemotherapy
cycles, geographic region).



Figure 2. Risk for CNS relapse by CNS-IPI and COO (CNS-

IPI-C) in the COO available population (n = 933). H-R, high 0.30 1
risk; I-R, intermediate risk; L-R, low risk; UNCL, unclassified.
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institutional practice, resulting in heterogeneous schedules and
doses. Randomized clinical trials would be required to define ap-
propriate CNS prophylaxis in DLBCL.

In conclusion, using the largest prospective dataset of previously
untreated DLBCL with relevant biomarker data to date, we
validated the CNS-IPI clinical prognostic model and demon-
strated that ABC and unclassified DLBCL are associated with
higher CNS relapse risk compared with GCB DLBCL. Combining
CNS-IPI and COO helped to improve stratification of DLBCL
patients with different CNS relapse risks.
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