14,019 research outputs found
Signs of Magnetic Accretion in the X-ray Pulsar Binary GX 301-2
Observations of the cyclotron resonance scattering feature in the X-ray
spectrum of GX 301-2 suggest that the surface field of the neutron star is
B_CRSF ~ 4 x 10^{12}G. The same value has been derived in modelling the rapid
spin-up episodes in terms of the Keplerian disk accretion scenario. However,
the spin-down rate observed during the spin-down trends significantly exceeds
the value expected in currently used spin-evolution scenarios. This indicates
that either the surface field of the star exceeds 50 x B_CRSF, or a currently
used accretion scenario is incomplete. We show that the above discrepancy can
be avoided if the accreting material is magnetized. The magnetic pressure in
the accretion flow increases more rapidly than its ram pressure and, under
certain conditions, significantly affects the accretion picture. The spin-down
torque applied to the neutron star in this case is larger than that evaluated
within a non-magnetized accretion scenario. We find that the observed spin
evolution of the pulsar can be explained in terms of the magnetically
controlled accretion flow scenario provided the surface field of the neutron
star is ~ B_CRSF.Comment: Accepted for publication in Ap
Effect of proof testing on the flaw growth characteristics of 304 stainless steel
The effects of proof overload frequency and magnitude on the cyclic crack growth rates of 304 stainless steel weldments were investigated. The welding procedure employed was typical of those used on over-the-road cryogenic vessels. Tests were conducted at room temperature with an overload ratio of 1.50 to determine the effect of overload frequency. Effect of overload magnitude was determined from tests where a room temperature overload was applied between blocks of 1000 cycles applied at 78 K (-320 F). The cyclic stress level used in all tests was typical of the nominal membrane stress generally encountered in full scale vessels. Test results indicate that judicious selection of proof overload frequency and magnitude can reduce crack growth rates for cyclic stress levels
Fracture characteristics of structural aerospace alloys containing deep surface flaws
Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions
Investigation of deep flaws in thin walled tanks
Growth of deep surface flaws in thin wall tanks of aluminum and titanium base metal
Digital compensation of the side-band-rejection ratio in a fully analog 2SB sub-millimeter receiver
In observational radio astronomy, sideband-separating receivers are
preferred, particularly under high atmospheric noise, which is usually the case
in the sub-millimeter range. However, obtaining a good rejection ratio between
the two sidebands is difficult since, unavoidably, imbalances in the different
analog components appear. We describe a method to correct these imbalances
without making any change in the analog part of the sideband-separating
receiver, specifically, keeping the intermediate-frequency hybrid in place.
This opens the possibility of implementing the method in any existing receiver.
We have built hardware to demonstrate the validity of the method and tested it
on a fully analog receiver operating between 600 and 720GHz. We have tested the
stability of calibration and performance vs time and after full resets of the
receiver. We have performed an error analysis to compare the digital
compensation in two configurations of analog receivers, with and without
intermediate frequency (IF) hybrid. An average compensated sideband rejection
ratio of 46dB is obtained. Degradation of the compensated sideband rejection
ratio on time and after several resets of the receiver is minimal. A receiver
with an IF hybrid is more robust to systematic errors. Moreover, we have shown
that the intrinsic random errors in calibration have the same impact for
configuration without IF hybrid and for a configuration with IF hybrid with
analog rejection ratio better than 10dB. Compensated rejection ratios above
40dB are obtained even in the presence of high analog rejection. The method is
robust allowing its use under normal operational conditions at any telescope.
We also demonstrate that a full analog receiver is more robust against
systematic errors. Finally, the error bars associated to the compensated
rejection ratio are almost independent of whether IF hybrid is present or not
Physical Mechanisms for the Variable Spin-down of SGR 1900+14
We consider the physical implications of the rapid spindown of Soft Gamma
Repeater 1900+14, and of the apparent "braking glitch", \Delta P/P = l x 10^-4,
that was concurrent with the Aug. 27th giant flare. A radiation-hydrodynamical
outflow associated with the flare could impart the required torque, but only if
the dipole magnetic field is stronger than ~ 10^14 G and the outflow lasts
longer and/or is more energetic than the observed X-ray flare. A positive
period increment is also a natural consequence of a gradual, plastic
deformation of the neutron star crust by an intense magnetic field, which
forces the neutron superfluid to rotate more slowly than the crust. Sudden
unpinning of the neutron vortex lines during the August 27th event would then
induce a glitch opposite in sign to those observed in young pulsars, but of a
much larger magnitude as a result of the slower rotation.
The change in the persistent X-ray lightcurve following the August 27 event
is ascribed to continued particle heating in the active region of that
outburst. The enhanced X-ray output can be powered by a steady current flowing
through the magnetosphere, induced by the twisting motion of the crust. The
long term rate of spindown appears to be accelerated with respect to a simple
magnetic dipole torque. Accelerated spindown of a seismically-active magnetar
will occur when its persistent output of Alfven waves and particles exceeds its
spindown luminosity. We suggest that SGRs experience some episodes of relative
inactivity, with diminished spindown rates, and that such inactive magnetars
are observed as Anomalous X-ray Pulsars (AXPs). The rapid reappearence of
persistent X-ray emission following August 27 flare gives evidence against
accretion-powered models.Comment: 24 pages, no figure
Results and prospects on registration of reflected Cherenkov light of EAS from cosmic particles above 10^{15} eV
We give an overview of the SPHERE experiment based on detection of reflected
Vavilov-Cherenkov radiation (Cherenkov light) from extensive air showers in the
energy region E>10^{15} eV. A brief history of the reflected Cherenkov light
technique is given; the observations carried out with the SPHERE-2 detector are
summarized; the methods of the experimental datasample analysis are described.
The first results on the primary cosmic ray all-nuclei energy spectrum and mass
composition are presented. Finally, the prospects of the SPHERE experiment and
the reflected Cherenkov light technique are given.Comment: 4 pages, 3 figures, Proc. PANIC-201
Teaching Teachers for the Future (TTF) Project: Development of the TTF TPACK survey instrument
This paper presents a summary of the key findings of the TTF TPACK Survey developed and administered for the Teaching the Teachers for the Future (TTF) Project implemented in 2011. The TTF Project, funded by an Australian Government ICT Innovation Fund grant, involved all 39 Australian Higher Education Institutions which provide initial teacher education. TTF data collections were undertaken at the end of Semester 1 (T1) and at the end of Semester 2 (T2) in 2011. A total of 12881 participants completed the first survey (T1) and 5809 participants completed the second survey (T2). Groups of like-named items from the T1 survey were subject to a battery of complementary data analysis techniques. The psychometric properties of the four scales: Confidence - teacher items; Usefulness - teacher items; Confidence - student items; Usefulness- student items, were confirmed both at T1 and T2. Among the key findings summarised, at the national level, the scale: Confidence to use ICT as a teacher showed measurable growth across the whole scale from T1 to T2, and the scale: Confidence to facilitate student use of ICT also showed measurable growth across the whole scale from T1 to T2. Additional key TTF TPACK Survey findings are summarised
- …
