3,750 research outputs found

    Nuclear pairing from microscopic forces: singlet channels and higher-partial waves

    Full text link
    Background: An accurate description of nuclear pairing gaps is extremely important for understanding static and dynamic properties of the inner crusts of neutron stars and to explain their cooling process. Purpose: We plan to study the behavior of the pairing gaps ΔF\Delta_F as a function of the Fermi momentum kFk_F for neutron and nuclear matter in all relevant angular momentum channels where superfluidity is believed to naturally emerge. The calculations will employ realistic chiral nucleon-nucleon potentials with the inclusion of three-body forces and self-energy effects. Methods: The superfluid states of neutron and nuclear matter are studied by solving the BCS gap equation for chiral nuclear potentials using the method suggested by Khodel et al., where the original gap equation is replaced by a coupled set of equations for the dimensionless gap function χ(p)\chi(p) defined by Δ(p)=ΔFχ(p)\Delta(p) = \Delta_F \chi(p) and a non-linear algebraic equation for the gap magnitude ΔF=Δ(pF)\Delta_F = \Delta(p_F) at the Fermi surface. This method is numerically stable even for small pairing gaps, such as that encountered in the coupled 3PF2^3PF_2 partial wave. Results: We have successfully applied Khodel's method to singlet (SS) and coupled channel (SDSD and PFPF) cases in neutron and nuclear matter. Our calculations agree with other ab-initio approaches, where available, and provide crucial inputs for future applications in superfluid systems.Comment: 18 pages and 9 figure

    Large metric perturbations from rescattering

    Full text link
    We study numerically evolution of metric perturbations during reheating in a model with two fields and a strong parametric resonance. Our calculation is fully nonlinear and includes gravity but is restricted to spherical symmetry. In this model, super-Hubble metric perturbations can grow during reheating only due to effects nonlinear in fluctuations of the fields. We find that they indeed grow and, soon after the growth begins, dominate variances of the metric functions. Thus, the metric functions become smooth but varying significantly over large scales. Their profiles at late times are interpreted as signalling a gravitational instability and formation of a black hole.Comment: 9 pages, revtex, 4 figures; corrected typo in eq. (1). Time variable in the plots was slightly messed up: fixed in v3 (a cosmetic change

    Relaxation of the cosmological constant in a movable brane world

    Get PDF
    We present numerical evidence that a domain wall in a background with varying vacuum energy density acquires velocity in the direction of decreasing Hubble parameter. This should lead to at least a partial relaxation of the cosmological constant on the wall.Comment: 10 pages, latex, 4 figure

    Metric perturbations at reheating: the use of spherical symmetry

    Get PDF
    We consider decay of the inflaton with a quartic potential coupled to other fields, including gravity, but restricted to spherical symmetry. We describe analytically an early, quasilinear regime, during which inflaton fluctuations and the metric functions are driven by nonlinear effects of the decay products. We present a detailed study of the leading nonlinear effects in this regime. Results of the quasilinear approximation, in its domain of applicability, are found to be consistent with those of fully nonlinear lattice studies. We discuss how these results may be promoted to the full three dimensions.Comment: 18 pages, revtex, 2 figure

    Dark Energy and the mass of galaxy clusters

    Get PDF
    Up to now, Dark Energy evidences are based on the dynamics of the universe on very large scales, above 1 Gpc. Assuming it continues to behave like a cosmological constant Λ\Lambda on much smaller scales, I discuss its effects on the motion of non-relativistic test-particles in a weak gravitational field and I propose a way to detect evidences of Λ≠0\Lambda \neq 0 at the scale of about 1 Mpc: the main ingredient is the measurement of galaxy cluster masses.Comment: 5 pages, no figures, references adde

    Adiabatic and Isocurvature Perturbations for Multifield Generalized Einstein Models

    Full text link
    Low energy effective field theories motivated by string theory will likely contain several scalar moduli fields which will be relevant to early Universe cosmology. Some of these fields are expected to couple with non-standard kinetic terms to gravity. In this paper, we study the splitting into adiabatic and isocurvature perturbations for a model with two scalar fields, one of which has a non-standard kinetic term in the Einstein-frame action. Such actions can arise, e.g., in the Pre-Big-Bang and Ekpyrotic scenarios. The presence of a non-standard kinetic term induces a new coupling between adiabatic and isocurvature perturbations which is non-vanishing when the potential for the matter fields is nonzero. This coupling is un-suppressed in the long wavelength limit and thus can lead to an important transfer of power from the entropy to the adiabatic mode on super-Hubble scales. We apply the formalism to the case of a previously found exact solution with an exponential potential and study the resulting mixing of adiabatic and isocurvature fluctuations in this example. We also discuss the possible relevance of the extra coupling in the perturbation equations for the process of generating an adiabatic component of the fluctuations spectrum from isocurvature perturbations without considering a later decay of the isocurvature component.Comment: 11 pages, 3 figures, one equation corrected, typos fixed, conclusions unchange

    Superhorizon curvaton amplitude in inflation and pre-big bang cosmology

    Full text link
    We follow the evolution of the curvaton on superhorizon scales and check that the spectral tilt of the curvaton perturbations is unchanged as the curvaton becomes non-relativistic. Both inflation and pre-big bang cosmology can be treated since the curvaton mechanism within the two scenarios works the same way. We also discuss the amplitude of the density perturbations, which leads to some interesting constrains on the pre-big bang scenario. It is shown that within a SL(3,R) non-linear sigma model one of the three axions has the right coupling to the dilaton and moduli to yield a flat spectrum with a high string scale, if a quadratic non-perturbative potential is generated and an intermediate string phase lasts long enough.Comment: 15 pages, LaTeX. Discussion and references adde

    Study of a Class of Four Dimensional Nonsingular Cosmological Bounces

    Full text link
    We study a novel class of nonsingular time-symmetric cosmological bounces. In this class of four dimensional models the bounce is induced by a perfect fluid with a negative energy density. Metric perturbations are solved in an analytic way all through the bounce. The conditions for generating a scale invariant spectrum of tensor and scalar metric perturbations are discussed.Comment: 16 pages, 10 figure

    Study of PVI-based diagnostics for 1D time-series in space plasma

    Get PDF
    Context. In the last few decades, increasing evidence has been found in both numerical studies and high-resolution in situ data that magnetic turbulence spontaneously generates coherent structures over a broad range of scales. Those structures play a key role in energy conversion because they are sites where magnetic energy is locally dissipated in plasma heating and particle energization. How much turbulent energy is dissipated via processes such as magnetic reconnection of thin coherent structures, namely current sheets, remains an open question. Aims. We aim to develop semi-automated methods for detecting reconnection sites over multiple spatial scales. This is indeed pivotal in advancing our knowledge of plasma dissipation mechanisms and for future applications to space data. Methods. By means of hybrid-Vlasov-Maxwell 2D-3V simulations, we combine three methods based on the partial variance of increments measured at a broad range of spatial scales and on the current density, which together, and in a synergistic way, provide indications as to the presence of sites of magnetic reconnection. We adopt the virtual satellite method, which in upcoming works will allow us to easily extend this analysis to in situ time-series. Results. We show how combining standard threshold analysis to a 2D scalogram based on magnetic field increments represents an efficient diagnostic for recognizing reconnecting structure in 1D spatial- and time-series. This analysis can serve as input to automated machine-learning algorithms

    Scalar-tensor cosmologies: fixed points of the Jordan frame scalar field

    Full text link
    We study the evolution of homogeneous and isotropic, flat cosmological models within the general scalar-tensor theory of gravity with arbitrary coupling function and potential. After introducing the limit of general relativity we describe the details of the phase space geometry. Using the methods of dynamical systems for the decoupled equation of the Jordan frame scalar field we find the fixed points of flows in two cases: potential domination and matter domination. We present the conditions on the mathematical form of the coupling function and potential which determine the nature of the fixed points (attractor or other). There are two types of fixed points, both are characterized by cosmological evolution mimicking general relativity, but only one of the types is compatible with the Solar System PPN constraints. The phase space structure should also carry over to the Einstein frame as long as the transformation between the frames is regular which however is not the case for the latter (PPN compatible) fixed point.Comment: 21 pages, 4 figures, some comments and references adde
    • …
    corecore