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ABSTRACT

Context. In the last few decades, increasing evidence has been found in both numerical studies and high-resolution in situ data that
magnetic turbulence spontaneously generates coherent structures over a broad range of scales. Those structures play a key role in
energy conversion because they are sites where magnetic energy is locally dissipated in plasma heating and particle energization.
How much turbulent energy is dissipated via processes such as magnetic reconnection of thin coherent structures, namely current
sheets, remains an open question.
Aims. We aim to develop semi-automated methods for detecting reconnection sites over multiple spatial scales. This is indeed pivotal
in advancing our knowledge of plasma dissipation mechanisms and for future applications to space data.
Methods. By means of hybrid–Vlasov–Maxwell 2D–3V simulations, we combine three methods based on the partial variance of
increments measured at a broad range of spatial scales and on the current density, which together, and in a synergistic way, provide
indications as to the presence of sites of magnetic reconnection. We adopt the virtual satellite method, which in upcoming works will
allow us to easily extend this analysis to in situ time-series.
Results. We show how combining standard threshold analysis to a 2D scalogram based on magnetic field increments represents an
efficient diagnostic for recognizing reconnecting structure in 1D spatial- and time-series. This analysis can serve as input to automated
machine-learning algorithms.
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1. Introduction

In the last 20 years, the launch of multi-spacecraft missions
has led to great advancement of our knowledge of the main
physics processes underlying the plasma dynamics in the near-
Earth environment and in the solar wind. Indeed, the pioneering
Cluster mission (Escoubet et al. 2001), made up of four identical
spacecraft flying in a tetrahedral configuration with adjustable
inter-spacecraft distance, allowed us to measure plasma fluctua-
tions not only over a broad range of frequencies (using single-
satellite data) but also as a function of spatial scale (Sahraoui
et al. 2006, 2009; Narita et al. 2010). The turbulent plasma has
been found to be characterized by a texture of thin discontinu-
ities and current-sheet-like structures that spontaneously emerge
at about the kinetic proton characteristic scale length (Perri et al.
2012; Greco et al. 2016). Such structures are thought to play a
fundamental role in the process of magnetic energy dissipation
and are often observed to be sites where magnetic reconnection
occurs (Paschmann et al. 1979; Gosling et al. 2005; Øieroset
et al. 2001; Vaivads et al. 2004; Retinó et al. 2007).

This picture is supported by a broad variety of numerical
simulations of plasma turbulence. In particular, Servidio et al.
(2011), by means of two-dimensional magnetohydrodynamic
(MHD) simulations, studied the statistical relation between the
detection of tangential discontinuities in the plasma and the
occurrence of reconnection along a 1D path traced within the
2D simulation box. This was carried out in order to mimic
the 1D measurements of a single satellite in space plasmas. It
has been highlighted that tangential discontinuities character-
ized by very high variation in the magnetic field increments

(quantitatively detected using the partial variance of increments
(PVI) – see Greco et al. 2008, 2009) are very good candidates for
also being identified as reconnection sites. Furthermore, both 2D
and 3D kinetic simulations of collisionless plasma have pointed
out that current sheets form down to the electron scale often as a
result of local instabilities and are characterized by strong local
dissipation and plasma heating (Karimabadi et al. 2013; Wan
et al. 2015; Arró et al. 2020). These thin current sheets have
also been proposed as a competitive mechanism, with respect to
the standard MHD turbulent cascade, for injecting the energy at
smaller subion scales. In other words, the plasma turbulence cas-
cade from intermediate to proton scales is also mediated by the
formation of a huge number of current-sheet structures subse-
quently disrupted by fast reconnection (Cerri & Califano 2017;
Franci et al. 2017).

Moreover, hybrid–Vlasov–Maxwell (HVM) experiments
also show regions characterized by high values of the cur-
rent density, high vorticity, and heat associated to ion tem-
perature anisotropy and distorted particle velocity distribution
functions (VDFs) that highly deviate from the initially imposed
Maxwellian equilibrium (Greco et al. 2012; Valentini et al.
2016). These experiments point out the occurrence of strong
interactions between turbulent fields and particles. Haynes et al.
(2014) in 2D particle-in-cell (PIC) simulations detected recon-
nection sites close to magnetic field X-points associated to par-
allel electron temperature anisotropy and multi-peaked electron
VDFs.

These coherent structures and reconnection sites, first iden-
tified in numerical experiments as regions of localized plasma
energy dissipation, have been directly studied in near-Earth
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Fig. 1. Distribution of the intensity of the current density within the x–y plane at three different simulation times (indicated at the top of the panels).
The time t = 494 corresponds to a fully developed turbulent state, where a Kolmogorov-like spectrum at intermediate scales has developed (see
Fig. 2).

plasmas thanks to the Magnetosphere MultiScale (MMS) mis-
sion. This mission was specifically designed to identify ion
and electron diffusion regions in the terrestrial magnetospheric
plasma, as well as to study the impact of small-scale plasma tur-
bulence on the acceleration and heating of particles. Indeed, the
distance between the four satellites can reach about 10 km, cor-
responding there to about the electron scale, a distance never
reached before (Burch et al. 2015; Eriksson et al. 2016; Ergun
et al. 2016; Vörös et al. 2017). In particular, the very high-
resolution data from the Fast Plasma Investigation instrument on
board MMS (Pollock et al. 2016) have allowed identification of
strong distortions of the ion and electron VDFs and local heating
close to reconnection sites and coherent structures at subproton
scales (Burch et al. 2015; Yordanova et al. 2016; Graham et al.
2017; Chasapis et al. 2017).

In the present work, we aim to identify coherent struc-
tures at proton and subproton scales resulting from 1D time-
series obtained with the virtual satellite technique from a 2D
HVM numerical experiment. To this purpose, we set up a semi-
automated method based on the computation of the partial
variance of increments (Greco et al. 2018). This allows us to
determine the possible presence of reconnecting structures.

2. Methods

2.1. Simulation

We performed a 2D–3V HVM simulation of plasma turbulence
across the ion cyclotron frequency. In this model, ions are fully
kinetic while electrons are assumed to take the form of a neutral-
izing isothermal fluid with mass through a generalized Ohm’s
law (Valentini et al. 2007). The dimensionless HVM system of
equations is summarized as follows. The Vlasov equation for the
ion distribution function fi = fi(x, u, t) is given by,

∂ fi
∂t

+ u · ∇ fi + (E + u × B) ·
∂ fi
∂u

= 0, (1)

where E and B are the electric and magnetic field. The Ohm’s
equation for the electron response reads,

E − d2
e∇

2E = −u × B +
1
n

J × B −
1
n
∇Pe

+
d2

e

n
∇ · (uJ + Ju) −

d2
e

n
∇ ·

(
J J
n

)
, (2)

where u = ui +d2
e ue is the fluid velocity, with ui and ue being the

ion and electron fluid velocity, respectively. Finally, the Ampère
and Faraday laws read,

∇ × B = J;
∂B
∂t

= −∇ × E, (3)

where the current displacement has been neglected in the
Ampére law and quasi-neutrality, ni ' ne ≡ n has been assumed.
The ion density ni and the ion fluid velocity ui are calculated
as the zeroth and first-order velocity momentum of fi, respec-
tively. All equations are normalized to the ion mass mi, the ion
cyclotron frequency Ωci = eB0/mic (B0 is the initial mean mag-
netic field), the Alfvén velocity vA = B0/

√
4πn0 mi (n0 is the

initial mean ion density), and the ion skin depth di = vA/Ωci.
With these normalizations, the electron skin depth is given by
de =

√
me/mi, where me is the electron mass. For the electron

pressure, we take an isothermal equation of state: Pe = nT0,e.
The set of Eqs. (1)–(3) is solved in a 2D–3V phase space using
an Eulerian algorithm (Mangeney et al. 2002) which combines
the so-called splitting scheme with the current advanced method
(for details, see Valentini et al. 2007). Our squared numerical
box of side L = 100π is sampled by Nx × Ny = 3072× 3072 uni-
formly distributed grid points corresponding to ∆x = ∆y ∼ 0.1di.
We set the initial mean field along z with modulus B0 = 1. The
initial distribution function is a Maxwellian of uniform temper-
ature T0i = T0e and the ion beta βi = 1. The velocity space
is sampled by 513 uniformly distributed grid points spanning
[−5vth,i, 5vth,i] in each direction, where vth,i =

√
βi/2 is the initial

ion thermal velocity. We set the reduced mass ratio mi/me = 100
so that di and de are sufficiently separated. Turbulence is initial-
ized by adding random, isotropic magnetic-field perturbations
to the equilibrium configuration with wave-number lying in the
interval k ∈ [0.02, 0.12] and a root mean squared value for the
magnetic field fluctuations of δBrms ∼ 0.28 (for a detailed dis-
cussion on the initial conditions, see Califano et al. 2020). The
wavelengths of the initial perturbation wave packet correspond
to the largest allowed by the numerical box.

The dynamical evolution at play in our simulation is sum-
marized in Fig. 1 by three snapshots of the current density mag-
nitude J ≡ |J | at different times, t = 20, 247, 494 (hereafter in
Ω−1

ci units). In the initial phase (shown in the left panel) the fluc-
tuations injected at large scales start to interact nonlinearly and
set up the initial phase of the energy cascade. As a result, after
about one eddy turnover time, t ∼ 247, an intermediate phase
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Fig. 2. Magnetic field power spectral densities at t ∼ 494 for the mag-
netic field component within the x–y plane (blue line), and for the out-
of-plane magnetic field component (orange line). The Kolmogorov-like
trend for wavenumbers smaller than the one corresponding to the ion
scale is also shown (green dashed line), as well as a k−2.8 power law at
higher wavenumbers (red dashed line) to guide the eye.

is reached (middle panel in Fig. 1) where we observe the pres-
ence of several well-defined, thin and elongated current sheets
(CSs). In a number of these CSs, magnetic reconnection occurs
eventually efficiently injecting the energy at subion scales. After
about two eddy turnover times, t ∼ 494 (right panel in Fig. 1),
the system reaches the final phase where turbulence is now fully
developed. The fully developed turbulence state is highlighted
by the time-evolution of the root mean square of the current den-
sity, Jrms =

√
〈J2〉 reaching its peak value. Correspondingly, we

observe the development of a typical power-law turbulent spec-
trum shown in Fig. 2 (see e.g., Cerri et al. 2016).

2.2. Sampling 2D turbulent structures along a 1D path

For the present analysis, we consider the state of the system dur-
ing the intermediate and final states, namely at t = 247, and
at t = 494. We allow a virtual satellite to “fly” within the 2D
simulation box, that is we track a 1D path within a 2D snap-
shot of the fields. This has been implemented by interpolating
the simulation data along a selected path. When a path reaches
the boundary of the simulation box, the virtual satellite re-enters
the box from the opposite side following the simulation period-
icity. This technique has been extensively used by Greco et al.
(2012) and Donato et al. (2013). We selected different trajecto-
ries for the virtual spacecraft crossing the box at different angles
with respect to the x-axis in order to maximize the probability
of crossing emerging current sheets and coherent structures in
the turbulent field. An example is reported in Fig. 3 where the
artificial 1D satellite path (blue line) samples a highly structured
current density. Such a trajectory forms an angle α = 5◦ with
respect to the x-axis.

Along such a 1D path we calculated the so-called partial vari-
ance of increments (PVI) (Greco et al. 2008, 2018), defined as:

I(∆s, s) =
|∆B(s,∆s)|√〈
|∆B(s,∆s)|2

〉 , (4)

where ∆B(s,∆s) = B(s + ∆s) − B(s) represents the magnetic
field vector increments calculated between points along the 1D

Fig. 3. Example of a 1D virtual satellite path within the simulation box
at an angle α = 5◦ with respect to the x axis.

trajectory s separated by a lag scale ∆s. Here 〈·〉 indicates the
average value along the entire 1D path. Such a technique allows
us to directly compare PVI space-series resulting from the virtual
satellite with the PVI time-series from real spacecraft, under the
assumption that the evolution time of the turbulence in real space
is much longer than the advection time of the plasma bulk flow
passing through the spacecraft. Indeed, under this “frozen-in”
assumption (Taylor 1938) it is possible to transform time-series
from satellites into space-series (being s = Vbulkt).

We computed the following analysis choosing trajectories at
angles: 5◦, 8◦, 13◦, 75◦, 80◦, and 85◦. At t ∼ 247 we also take
α = 33◦ and 78◦, while at t ∼ 494 we also considered α =

18◦, 34◦, and 45◦ in order to cross X-points emerging from the
turbulent field.

3. Results

3.1. Statistical analysis

Following Servidio et al. (2011) and Donato et al. (2013), we
explored the correlation between reconnection sites and high
PVI events in a regime where we observe the development of
thin current sheets over scales comparable with the ion skin
depth.

In MHD and Hall-MHD numerical simulations, Servidio
et al. (2011) and Donato et al. (2013) applied an arbitrary thresh-
old θ on the PVI signal by imposing that I(∆s, s) > θ. They
found a direct correlation between PVI events that satisfy the
threshold method and reconnection sites. Thus, they defined two
quantities called goodness and efficiency. The former is the num-
ber of the successes (reconnection events) over the total num-
ber of identified discontinuities via the threshold method, while
the latter is the ratio of the number of identified reconnection
sites to the total number of reconnection regions along the tra-
jectory. It has been found that the goodness increases as the
PVI threshold increases, while efficiency decreases. Osman et al.
(2014) applied a similar PVI-threshold methodology (at fixed lag
scales ∆s) to solar wind data from the Wind spacecraft at 1 AU,
obtaining the same trend (the higher the threshold, the higher the
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Fig. 4. For t = 247 values of the goodness as a function of the spatial scale in units of di, for nine different PVI thresholds, corresponding to the
nine panels. At this time, the typical size of the current sheets is ∼1 di. It is worth mentioning that at this stage of the simulation the PVI is a good
indicator of reconnecting current sheets over a broad range of scales.

goodness but the lower the efficiency). As higher values of PVI
are related to the presence of intermittent structures in a turbu-
lent environment, the observed trend of goodness implies that
reconnecting events tend to have a more intermittent character
than nonreconnecting ones.

In our simulations, we selected a set of “verified” reconnec-
tion events using a threshold on the current density defined as
in Uritsky et al. (2010). We further checked the selected cur-
rent sheets one by one by looking at reconnection signatures in
the current density, electron decoupling, electron vorticity, Hall
field, in-plane magnetic field, and the electron outflows. We then
interpolated the virtual spacecraft trajectories at various angles
crossing the above selected reconnecting current sheets.

We performed the statistical analysis at t = 247 and t = 494.
Moreover, we compute the PVI as in Eq. (4) at 60 different spa-
tial scales, ranging from ∆s = 0.05di to ∆s = 3di. Following
the methodology outlined above, we computed the goodness by
selecting different PVI thresholds. We express the threshold θ
for a given quantity Q as the number n of standard deviations
σ from the mean value µ, that is θ(Q) = µ(Q) + nσ(Q) with
µ(Q) = 〈Q〉 and σ(Q) =

√
〈(Q − µ(Q))2〉. Thus, the threshold

computed for the standardized PVI (I − µ(I))/σ(I) is of a very
simplified form, namely (θ − µ)/σ = n. This is extremely use-
ful when working with multiple series of data, each with its own
statistics. Figures 4 and 5 show the results of this analysis at
t = 247 and t = 494, respectively. At both times, the good-
ness increases as the PVI threshold increases, reaching values of
>80% for thresholds >µ + 10σ. This goodness–threshold rela-
tion is particularly evident if we consider the variation of good-
ness at a fixed scale for different thresholds as in Fig. 6 (solid
lines). Thus, our findings corroborate the idea that reconnect-
ing current sheets are more intermittent than nonreconnecting
ones. Also in Fig. 6 the number of PVI peaks above a given
threshold is reported (dotted lines), which is the denominator for
the goodness. By increasing the threshold value, the number of
PVI events above the threshold decreases, affecting the statis-

tical significance of the goodness. For this reason, we consider
PVI thresholds θ ≤ µ + 18σ.

A scale dependence is observed both at t = 247 (see Fig. 4)
and in the fully developed state t = 494 (see Fig. 5). This depen-
dence has to be ascribed to the multi-scale character of a fully
developed turbulent plasma. We note that, at t = 494, at scales
smaller than about 1di the goodness tends to decrease. This evi-
dence can be explained by the fact that the HVM simulation
allows for the formation of structures smaller than di that are
not reconnecting current sheets but thin discontinuities or inter-
faces between different portions of plasma. We show examples
of this kind of discontinuity in the following section, together
with other diagnostics that complement the goodness method in
the detection of reconnecting current sheets.

To complement the present analysis, we gathered informa-
tion about the PVI peak values of the human-verified events.
We found 19 human-identified reconnection regions at t = 247
and 47 at t = 494. These sites are identified as 2D regions in
the whole simulation box. The virtual spacecraft can cross these
reconnection sites multiple times. We collect the PVI peak val-
ues for all scales ∆s each time a region labeled as a reconnection
is crossed. In Fig. 7, for each ∆s, we show the mean value of
these PVI peaks (blue squares) along with the ±1 standard devia-
tion interval (blue vertical bar) and their extreme values (upright
and upside-down black triangles). This is done separately at
t = 247 and t = 494. It can be observed that by increasing
the threshold value, the number of reconnecting sites decreases
but the total number of above-threshold events also decreases
(see also Fig. 6). The former is the numerator and the latter the
denominator of the goodness. Overall, this leads to an increase
in the goodness values (as found in previous studies and already
discussed). From Fig. 7, we observe that the PVI peaks related
to the human-labeled reconnection regions at t = 247 are larger
than those found at t = 494. This suggests that reconnection
structures are “sharper” at t = 247 before the fully developed
turbulence is reached. Assuming that this is correlated with the
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Fig. 5. For t = 494 values of the goodness as a function of the spatial scale in units of di, for nine different PVI thresholds, corresponding to the
nine panels. We note that in such a state of fully developed turbulence, the typical size of the emerging current sheets is 0.85di. For structures
greater in size than this typical scale, the goodness starts increasing and is higher for larger PVI thresholds (in agreement with Servidio et al. 2011).

Fig. 6. Solid lines: Variation of goodness as a function of threshold θ in three different cases: (1) ∆s = 1.5di, t = 247; (2) ∆s = 1.5di, t = 494; and
(3) ∆s = 2.5di, t = 494. Dotted lines: Number of PVI peaks above each threshold value for the same three cases (in matching colors).

thickness of the reconnecting current sheets, we should expect
faster (on average) reconnection at t = 247. For t = 494, we
also observe a constant rise in the max PVI peak value (upright
triangles) at high scales (∆s > 2). This is probably linked to the
concomitant formation of reconnecting structures at larger scales
due to the turbulent cascade process.

We investigated the possible joint use of the current density
measurement and of the PVI as proxies for magnetic reconnec-
tion. In particular, we considered the PVI signal over the virtual
satellite trajectory integrated over all the spatial scales consid-
ered, namely

∫
∆s I. The choice of this second quantity is done

for both practical and physical reasons. The practical reason is
the resultant reduction of proxies to be worked with, as all the
∆s-dependent PVI series are “cumulated” into the ∆s-integrated
ones. An alternative approach would be to select a single ∆s for
the entire analysis. However, as discussed in Sect. 3.2, during
magnetic reconnection we expect a broad range of scales to be
involved, and this is the physical reason for the use of

∫
∆s I.

Therefore, we set different thresholds on both J2 and
∫

∆s I in
order to find an optimal combination. We set

µ
(
J2

)
+ 3σ

(
J2

)
< θ

(
J2

)
< µ

(
J2

)
+ 8σ

(
J2

)
, (5)

µ
(∫

∆s I
)

+ 4σ
(∫

∆s I
)
< θ

(∫
∆s I

)
< µ

(∫
∆s I

)
+ 12σ

(∫
∆s I

)
. (6)

Then, from all the trajectories, segments of length ∆s = 3.066di
(the largest PVI scale considered) are extracted if they satisfy at
least one of the following requirements: (i) one or more points
belong to a structure human-labeled as “reconnection”, (ii) in
one or more points J2 > θ(J2), and/or (iii) in one or more points∫

∆s I > θ(
∫

∆s I).
Thanks to the human-labeling and to the two thresholds, it

is possible to subdivide them into true positives (TP), false pos-
itives (FP), and false negatives (FN). Thus, we can compute the
goodness as TP/(TP + FP) and the efficiency as TP/(TP + FN).
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Fig. 7. Average of the PVI peak values related to the human-verified reconnection events (i.e., average of the PVI local maxima collected at
each crossing of reconnection regions) for each lag ∆s (blue squares). The ±1σ interval (blue vertical bars), the maximum values (upright black
triangles), and the minimum values (upside-down black triangles) are also reported. Horizontal dashed lines are the thresholds used for Figs. 4–5.
To compare PVI peak values from different trajectories, the standardized PVI (I − µ(I))/σ(I) is reported (where µ(I) = 〈I〉). Top panel is for
t = 247 and the bottom panel for t = 494.

To balance these two indicators, we used the F1 score, which is
the harmonic mean of the two:

F1 score = 2
goodness · efficiency
goodness + efficiency

. (7)

It is important to indicate the condition that distinguishes
positives from negatives. Having two thresholds, we have four
possibilities: (i) consider as positive any segment where at least
one of the two thresholds is exceeded, (ii) consider a segment
positive only if both thresholds are exceeded, (iii) consider a
segment positive if the threshold on J2 is exceeded, or (iv) con-
sider a segment positive if the threshold on

∫
∆s I is exceeded.

Both (iii) and (iv) are trivial cases of this double-threshold anal-
ysis. We found that option (ii) maximizes the F1 score with the
threshold pairs (µ(J2) + 4σ(J2), µ(

∫
∆s I) + 6σ(

∫
∆s I)). However,

the F1 score obtained is just 0.58 and cannot be considered as
satisfying.

In the following section we further analyze trajectory
segments using the above pair of thresholds (µ(J2) +

4σ(J2), µ(
∫

∆s I) + 6σ(
∫

∆s I)) and complementing the F1 score
analysis with PVI scalograms.

3.2. Scalogram analysis

It is hard to recognise what kind of structure is crossed simply
by analyzing a 1D time-series. In order to obtain more physi-
cal information on the structures embedded in the plasma and
crossed by the satellite, it is possible to study time-series using a
2D scalogram with scale and space dependencies.

This can be done by applying a wavelet transform to the 1D
signal. However, as discussed in Vörös et al. (2010), the fact that
the same wavelet basis has to be applied to the whole series can
generate erroneous representations if the signal presents sudden
jumps and strong nonlinearity. Wavelet analysis can be adopted
successfully for nonlinear systems, but it heavily depends on the

Fig. 8. Example of a virtual satellite trajectory (t = 247 and α = 8◦).
Sites of magnetic reconnection are localized by red circles, sites where∫

∆s
I > θ(

∫
∆s
I) are localized by green circles, and sites where J2 >

θ(J2) are localized by blue circles.

choice of the mother wavelet, proper resolution, and scale dis-
cretization.

Alternatively, one can obtain scalograms using the PVI com-
puted over the trajectory at different scales. This was implemented
by Greco et al. (2016) in the context of magnetic reconnection in
turbulent plasma using data from the Cluster satellites. Here, we
apply that method on our 2D simulated fields. At different times,
we trace several 1D trajectories over the box, allowing for a rela-
tively large sampling in the form of space series.
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(a) (b) (c)

(d) (e) (f)

Fig. 9. (a) Simple turbulence crossing (t = 494, α = 85◦). (b) Boundary of magnetic structure with strong shear, but no reconnection (t = 247,
α = 33◦). (a) and (b) structures have been selected via the threshold on J only (true negatives). (c) Crossing of a reconnection separatrix (t = 494,
α = 85◦), selected via the threshold on J and on the scale-integrated PVI, as well as using human labeling (true positive). See text for further
details. (d– f ) Overview of the structures crossed in the 2D box.

In Fig. 8, the gray dotted line represents one of these tra-
jectories in the simulation box at time t = 247. All struc-
tures of interest are reported along the trajectory: reconnecting
regions are indicated by red circles, green circles indicate points
where J >

√
θ(J2) ≡

√
µ(J2) + 4σ(J2) (as the threshold is still

computed from J2), and blue dots are points where the scale-
integrated PVI overcomes its threshold, µ(

∫
∆s I) + 6σ(

∫
∆s I).

Once again, the threshold values are obtained by maximizing
the F1 score, that is, by taking a segment as positive only if
both thresholds are exceeded. This method to define positives
and negatives is used in what follows.

In the PVI scalogram, over the entire virtual satellite trajec-
tory (not shown here), there are portions of the signal character-
ized by high values. Such regions need to be studied separately.
Examples of structures crossed by the virtual satellite are ana-
lyzed below.

Figure 9 shows three crossed plasma structures in detail.
Time-series of the intensity of the current density J (green)
and of the scale-integrated PVI

∫
∆s I (blue) are displayed in the

top panels, together with the two respective thresholds (dashed

lines). Red regions indicate reconnection sites as detected from
the analysis in Sect. 3.1 (i.e., human-labeling). The bottom panel
presents the PVI scalogram over the segment.

As expected, the scale-integrated PVI and the electric current
intensity tend to be well correlated along the trajectories (Greco
et al. 2016). Also, regions human-labeled as reconnections coin-
cide with large-amplitude peaks in both quantities. An analysis
performed over all the trajectory segments suggests that those
in which only the

∫
∆s I overcomes the threshold are never (or

rarely) labeled by human as reconnecting. This means that the
scale-integrated PVI is not a precise reconnection proxy if used
alone. Regions human-labeled as reconnecting with both

∫
∆s I

and J under their thresholds correspond to reconnection struc-
tures that are too small to be adequately resolved by the simu-
lation grid or too feeble to be of particular interest. Moreover,
it is plausible that these small and/or feeble structures are more
prone to human mislabeling.

Figures 9a and b show two typical examples of nonrecon-
necting regions selected using a threshold on J. Figure 9a shows
a virtual satellite crossing of the turbulent plasma (cf. Fig. 9d).
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(a) (b) (c)

(d) (e) (f)

Fig. 10. (a) Crossing of two reconnection separatrices at a certain distance from the X-point (t = 247, α = 5◦), selected via the threshold on |J| and
on the scale-integrated PVI, as well as using human labeling (true positive). (b) Crossing of two separatrices close to the X-point of a reconnecting
region (t = 247, α = 78◦), which is again a true positive. (c) Crossing of two separatrices (t = 247, α = 13◦) selected via the threshold method on
J and on PVI, but not via human labeling (i.e., false positive). (d– f ) Overview of the structures crossed in the 2D box.

In this example, all scales are involved, but thanks to the spa-
tial information in the PVI scalogram one can see that there is
no clear pattern that can be linked to a specific structure. On the
other hand, in Fig. 9b the PVI scalogram very clearly shows the
boundary region of the selected magnetic structure (cf. Fig. 9e),
which is characterized by high values of PVI. The boundary is
highly localized both in space and in scale. This corresponds to
the edge of an island where a strong shear is present but with-
out reconnection. We noticed that, in our numerical simulation,
nonreconnecting structures tend to have the current overcoming
its threshold but not the scale-integrated PVI. In summary, the
single threshold analysis on the current density or on the scale-
integrated PVI generates many false positives (especially on the
current), while the double threshold analysis is able to cut out
many of those false positives.

Figure 9c represents a crossing of a single separatrix1 close
to a reconnection region (cf. Fig. 9f) localized using both the

1 Here and in what follows, “separatrix” refers to (a portion of)
the typical “X” shape associated with reconnection processes (see
Figs. 9f–11f).

threshold methods on PVI and J, and the human-labeling (i.e., a
true positive). PVI tends to be quite high over a broad range of
scales and slightly shifted with respect to the peak in J. This hap-
pens because the separatrix region is characterized by an internal
structure where turbulence starts developing. More importantly,
all scales are involved.

In Fig. 10a (also a true positive), both separatrices (relative
to the same outflow) are crossed (cf. Fig. 10d). Again, magnetic
energy is spread over a broad range of scales, and the PVI scalo-
gram unveils an internal structure of the outflow region. Two
space-localized peaks in the PVI scalogram that are well sep-
arated at small scales drift until they merge at larger scales. We
note that scale-integrated PVI values are above the threshold.
Figure 10b (true positive) displays a similar two-separatrices
crossing, but this time closer to the X-point of the diffusion
region (cf. Fig. 10e). The pattern in the PVI scalogram presents,
again, two spatially separated peaks at small scales that drift
until they merge. After the merging, the pattern develops in a 2D
cone, opening toward high scales. This pattern can be consid-
ered as representative of a crossing of a magnetic reconnecting
region.
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(a) (b) (c)

(d) (e) (f)

Fig. 11. (a) Typical X-point crossing (t = 247, α = 13◦). (b) Normal crossing of an X-point (t = 494, α = 34◦). Both sites are true positives.
(c) Longitudinal crossing of an X-point (t = 247, α = 85◦), which is a false negative because the scale-integrated PVI is under threshold. (d– f )
Overview of the structures crossed in the 2D box.

Figure 10c corresponds to a reconnecting structure, albeit
quite deformed by the turbulent dynamics (cf. Fig. 10f), crossed
by the virtual spacecraft, and classified as a false positive (both
current and PVI are above their thresholds, but the site was not
labeled as reconnection). The PVI scalogram shows the typical
pattern of a two-separatrices crossing, similar to Fig. 10a. This
suggests that the method of the “drift-cone” pattern (or class of
patterns) can be very useful in searching for reconnecting struc-
tures from 1D time-series. Indeed, we found that this approach
turns out to be very effective even in cases where it is hard for
humans to discern the occurrence of reconnection or not.

In Fig. 11a we show a typical electron diffusion region
(EDR) crossing, which is characterized by a large-amplitude
scale-integrated PVI peak symmetric with respect to the EDR
crossing point (cf. Fig. 11d). In this case, the PVI scalogram has
a cone-like pattern over all scales. This feature may depend on
the actual crossing angle (with respect to the neutral line) of the
structure. Thus, in Fig. 11b we capture a normal (with respect to
the neutral line) EDR crossing (cf. Fig. 11e). The PVI scalogram
shows the same cone-like pattern. A symmetric scale-integrated

PVI peak is also found, even if lower in amplitude with respect
to the previous one. This can be very useful for understanding
how a satellite is crossing a diffusion region. Both crossings are
true positives.

A more peculiar EDR crossing is shown in Fig. 11c. Here, the
crossing is quasi-longitudinal, that is, quasi-parallel to the neu-
tral line (cf. Fig. 11f). The cone-like pattern is still present, but
the PVI amplitude decreases drastically and no peak is found in
the scale-integrated PVI. This suggests that the pattern in the PVI
scalogram could be a more robust proxy with respect to the thresh-
old methods (Greco et al. 2008, 2009). Indeed, this site is a false
negative because the scale-integrated PVI is under threshold but
the PVI scalogram clearly hints that it is an EDR crossing.

PVI scalograms can also help to filter away some false
positives, which are the major issue in the “double-threshold”
analysis presented in the previous Section. Figure 12a shows
a turbulent structure crossing that has been flagged as positive
because both quantities are over their thresholds (cf. Fig. 12b).
However, a quick look at the PVI scalogram shows that no par-
ticular patterns across the spatial scales are present.
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(a)

(b)

Fig. 12. (a) Crossing of a turbulent region (t = 494, α = 85◦) detected
as a positive by the double-threshold method, but with no features in
the PVI scalogram (i.e., false positive). (b) Overview of the structure
crossed in the 2D box.

4. Conclusions

In order to detect reconnection sites in 1D time- and space-series
sampled by a (virtual) satellite flying into a HVM simulation, we
considered three different diagnostics. The first two are standard
threshold methods applied to the intensity of the current den-
sity and to the PVI signals (considered both per-scale and scale-
integrated). The third one is the PVI scalogram as a function of
the time and space trajectories of the spacecraft and of the spatial
scales and timescales. PVI scalograms were successfully applied
to Cluster data set to detect the presence of coherent magnetized
structures characterized by a broad range of timescales (Greco
et al. 2016). Typically, the PVI threshold method can capture
all structures emerging from the turbulent dynamics, such as
magnetic field inhomogeneity, magnetic discontinuities, and vor-
tices, which are often sites of local energy conversion (Servidio
et al. 2012; Perrone et al. 2020; Fadanelli et al. 2021).

The main achievements of the present analysis are the fol-
lowing.

– Using the threshold method on J and on the scale-integrated
PVI is not sufficient to localize a reconnection site because

these methods strongly depend on the way the satellite
crosses the reconnecting structure (see e.g., Figs. 11f and c).

– When the satellite crosses a reconnecting current sheet, the
PVI scalogram exhibits a typical cone-like pattern extending
over a broad range of scales. Depending on how the structure
is crossed by the spacecraft, it can also show an X-shaped
pattern.

– Nonreconnecting sites can have J and the PVI above their
arbitrary thresholds, but the scalogram does not exhibit any
particular feature (see Fig. 12a).

This combined analysis method turns out to be very effective
and can be straightforwardly extended to in situ spacecraft time-
series. As far as spacecraft data are concerned, the computa-
tion of PVI scalograms from 1D time-series was found to be
a powerful method of investigation. Indeed, it only requires
high-resolution magnetic field data, which are relatively eas-
ily obtained by modern space missions (Balogh et al. 2001;
Burch et al. 2015; Fox et al. 2016; Horbury et al. 2020). On
the other hand, computing current density from in situ data is
often challenging, because it implies either the presence of a
multi-spacecraft fleet (typically a constellation of four satellites;
Dunlop et al. 2002) or high-cadence plasma data that relate the
current density to plasma density and to ion and electron speeds
(see also Perri et al. 2017). Thus, recognizing signatures of mag-
netic reconnection regions in PVI scalograms can be an easy tool
to implement for single-spacecraft missions but also in cases
where high-resolution plasma data are not available. We plan
to extensively apply this method to already studied reconnec-
tion regions detected by MMS at 1 AU (Burch et al. 2015; Ergun
et al. 2016; Vörös et al. 2017) and to new data sets from Parker
Solar Probe and Solar Orbiter, in order to improve our knowl-
edge on the rate of occurrence of reconnecting structures as a
function of the radial distance from the Sun. Further, it is worth
mentioning the fact that the joint results from these three meth-
ods can be passed as input to machine learning algorithms. We
indeed advocate the use of the PVI scalogram analysis in the
framework of an algorithmic strategy in order to automatize the
classification process. The most obvious way to do this would
be to use a convolutional neural network (CNN); this strategy is
widely adopted in image recognition, and was used for the spe-
cific case of magnetic reconnection in Hu et al. (2020).
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