2,070 research outputs found

    Two years of AD operation: Experience and progress

    Get PDF
    The antiproton decelerator (AD) has been running successfully for physics for the past two years. After the end of the commissioning period [1] that finished in 2000, the machine has gradually been improved. The main efforts were concentrated on increasing the beam intensity, reducing the cycle length and improving the machine stability. The intensity of the injected beam has been significantly increased due to a higher beam intensity from the PS complex and also due to increased transverse acceptances in the AD machine. The beam losses during deceleration were reduced from 30-40 % down to a few percent, mainly due to improvements of the operation of the deceleration RF cavity. Altogether these improvements increased the intensity of the ejected beam by a factor of two. Improvements of the electron cooling were followed by a reduction of emittances and cycle duration (about 15%). Progress in beam diagnostics now allows the monitoring of the machine performance during the whole cycle. The stability of the machine at the ejection momentum 100 MeV/c remains a crucial point and the identification of the causes of fluctuations in the ejected beam parameters are now under investigation

    Contextualizing Wetlands Within a River Network to Assess Nitrate Removal and Inform Watershed Management

    Get PDF
    Aquatic nitrate removal depends on interactions throughout an interconnected network of lakes, wetlands, and river channels. Herein, we present a network‐based model that quantifies nitrate‐nitrogen and organic carbon concentrations through a wetland‐river network and estimates nitrate export from the watershed. This model dynamically accounts for multiple competing limitations on nitrate removal, explicitly incorporates wetlands in the network, and captures hierarchical network effects and spatial interactions. We apply the model to the Le Sueur Basin, a data‐rich 2,880 km2 agricultural landscape in southern Minnesota and validate the model using synoptic field measurements during June for years 2013–2015. Using the model, we show that the overall limits to nitrate removal rate via denitrification shift between nitrate concentration, organic carbon availability, and residence time depending on discharge, characteristics of the waterbody, and location in the network. Our model results show that the spatial context of wetland restorations is an important but often overlooked factor because nonlinearities in the system, e.g., deriving from switching of resource limitation on denitrification rate, can lead to unexpected changes in downstream biogeochemistry. Our results demonstrate that reduction of watershed‐scale nitrate concentrations and downstream loads in the Le Sueur Basin can be most effectively achieved by increasing water residence time (by slowing the flow) rather than by increasing organic carbon concentrations (which may limit denitrification). This framework can be used toward assessing where and how to restore wetlands for reducing nitrate concentrations and loads from agricultural watersheds.This research was funded by NSF grant EAR-1209402 under the Water Sustainability and Climate Program (WSC): REACH (REsilience under Accelerated CHange)NSF grant EAR-1242458 under Science Across Virtual Institutes (SAVI): LIFE (Linked Institutions for Future EarthA.T.H. acknowledges support provided by NSF grant EAR- 1415206 under the Science, Engineering and Education for Sustainability (SEES

    Effects of elevated CO2 and temperature on phytoplankton community biomass, species composition and photosynthesis during an experimentally induced autumn bloom in the western English Channel

    Get PDF
    The combined effects of elevated pCO2 and temperature were investigated during an experimentally induced autumn phytoplankton bloom in vitro sampled from the western English Channel (WEC). A full factorial 36-day microcosm experiment was conducted under year 2100 predicted temperature (+4.5°C) and pCO2 levels (800ÎŒatm). Over the experimental period total phytoplankton biomass was significantly influenced by elevated pCO2. At the end of the experiment, biomass increased 6.5-fold under elevated pCO2 and 4.6-fold under elevated temperature relative to the ambient control. By contrast, the combined influence of elevated pCO2 and temperature had little effect on biomass relative to the control. Throughout the experiment in all treatments and in the control, the phytoplankton community structure shifted from dinoflagellates to nanophytoplankton . At the end of the experiment, under elevated pCO2 nanophytoplankton contributed 90% of community biomass and was dominated by Phaeocystis spp. Under elevated temperature, nanophytoplankton comprised 85% of the community biomass and was dominated by smaller nanoflagellates. In the control, larger nanoflagellates dominated whilst the smallest nanophytoplankton contribution was observed under combined elevated pCO2 and temperature ( ∌ 40%). Under elevated pCO2, temperature and in the control there was a significant decrease in dinoflagellate biomass. Under the combined effects of elevated pCO2 and temperature, dinoflagellate biomass increased and was dominated by the harmful algal bloom (HAB) species, Prorocentrum cordatum. At the end of the experiment, chlorophyll a (Chl a) normalised maximum photosynthetic rates (PBm) increased > 6-fold under elevated pCO2 and > 3-fold under elevated temperature while no effect on PBm was observed when pCO2 and temperature were elevated simultaneously. The results suggest that future increases in temperature and pCO2 simultaneously do not appear to influence coastal phytoplankton productivity but significantly influence community composition during autumn in the WEC

    Secondary school pupils' preferences for different types of structured grouping practices

    Get PDF
    The aim of this paper is to explore pupils’ preferences for particular types of grouping practices an area neglected in earlier research focusing on the personal and social outcomes of ability grouping. The sample comprised over 5,000 year 9 pupils (aged 13-14 years) in 45 mixed secondary comprehensive schools in England. The schools represented three levels of ability grouping in the lower school (years 7 to 9). Pupils responded to a questionnaire which explored the types of grouping that they preferred and the reasons for their choices. The majority of pupils preferred setting, although this was mediated by their set placement, type of school, socio-economic status and gender. The key reason given for this preference was that it enabled work to be matched to learning needs. The paper considers whether there are other ways of achieving this avoiding the negative social and personal outcomes of setting for some pupils

    Herschel-ATLAS: VISTA VIKING near-IR counterparts in the Phase 1 GAMA 9h data

    Get PDF
    We identify near-infrared Ks band counterparts to Herschel-ATLAS sub-mm sources, using a preliminary object catalogue from the VISTA VIKING survey. The sub-mm sources are selected from the H-ATLAS Phase 1 catalogue of the GAMA 9h field, which includes all objects detected at 250, 350 or 500 um with the SPIRE instrument. We apply and discuss a likelihood ratio (LR) method for VIKING candidates within a search radius of 10" of the 22,000 SPIRE sources with a 5 sigma detection at 250 um. We find that 11,294(51%) of the SPIRE sources have a best VIKING counterpart with a reliability R≄0.8R\ge 0.8, and the false identification rate of these is estimated to be 4.2%. We expect to miss ~5% of true VIKING counterparts. There is evidence from Z-J and J-Ks colours that the reliable counterparts to SPIRE galaxies are marginally redder than the field population. We obtain photometric redshifts for ~68% of all (non-stellar) VIKING candidates with a median redshift of 0.405. Comparing to the results of the optical identifications supplied with the Phase I catalogue, we find that the use of medium-deep near-infrared data improves the identification rate of reliable counterparts from 36% to 51%.Comment: 20 pages, 20 figures, 3 tables, accepted by MNRA

    Results of a randomized, double-blind phase II clinical trial of NY-ESO-1 vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in participants with high-risk resected melanoma.

    Get PDF
    BACKGROUND: To compare the clinical efficacy of New York Esophageal squamous cell carcinoma-1 (NY-ESO-1) vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in a randomized, double-blind phase II study in participants with fully resected melanoma at high risk of recurrence. METHODS: Participants with resected stage IIc, IIIb, IIIc and IV melanoma expressing NY-ESO-1 were randomized to treatment with three doses of NY-ESO-1/ISCOMATRIX or ISCOMATRIX adjuvant administered intramuscularly at 4-week intervals, followed by a further dose at 6 months. Primary endpoint was the proportion free of relapse at 18 months in the intention-to-treat (ITT) population and two per-protocol populations. Secondary endpoints included relapse-free survival (RFS) and overall survival (OS), safety and NY-ESO-1 immunity. RESULTS: The ITT population comprised 110 participants, with 56 randomized to NY-ESO-1/ISCOMATRIX and 54 to ISCOMATRIX alone. No significant toxicities were observed. There were no differences between the study arms in relapses at 18 months or for median time to relapse; 139 vs 176 days (p=0.296), or relapse rate, 27 (48.2%) vs 26 (48.1%) (HR 0.913; 95% CI 0.402 to 2.231), respectively. RFS and OS were similar between the study arms. Vaccine recipients developed strong positive antibody responses to NY-ESO-1 (p≀0.0001) and NY-ESO-1-specific CD4+ and CD8+ responses. Biopsies following relapse did not demonstrate differences in NY-ESO-1 expression between the study populations although an exploratory study demonstrated reduced (NY-ESO-1)+/Human Leukocyte Antigen (HLA) class I+ double-positive cells in biopsies from vaccine recipients performed on relapse in 19 participants. CONCLUSIONS: The vaccine was well tolerated, however, despite inducing antigen-specific immunity, it did not affect survival endpoints. Immune escape through the downregulation of NY-ESO-1 and/or HLA class I molecules on tumor may have contributed to relapse

    Culture shapes how we look at faces

    Get PDF
    Background: Face processing, amongst many basic visual skills, is thought to be invariant across all humans. From as early as 1965, studies of eye movements have consistently revealed a systematic triangular sequence of fixations over the eyes and the mouth, suggesting that faces elicit a universal, biologically-determined information extraction pattern. Methodology/Principal Findings: Here we monitored the eye movements of Western Caucasian and East Asian observers while they learned, recognized, and categorized by race Western Caucasian and East Asian faces. Western Caucasian observers reproduced a scattered triangular pattern of fixations for faces of both races and across tasks. Contrary to intuition, East Asian observers focused more on the central region of the face. Conclusions/Significance: These results demonstrate that face processing can no longer be considered as arising from a universal series of perceptual events. The strategy employed to extract visual information from faces differs across cultures

    Search for Point Sources of Ultra-High Energy Cosmic Rays Above 40 EeV Using a Maximum Likelihood Ratio Test

    Full text link
    We present the results of a search for cosmic ray point sources at energies above 40 EeV in the combined data sets recorded by the AGASA and HiRes stereo experiments. The analysis is based on a maximum likelihood ratio test using the probability density function for each event rather than requiring an a priori choice of a fixed angular bin size. No statistically significant clustering of events consistent with a point source is found.Comment: 7 pages, 7 figures. Accepted for publication in The Astrophysical Journa

    An upper limit on the electron-neutrino flux from the HiRes detector

    Full text link
    Air-fluorescence detectors such as the High Resolution Fly's Eye (HiRes) detector are very sensitive to upward-going, Earth-skimming ultrahigh energy electron-neutrino-induced showers. This is due to the relatively large interaction cross sections of these high-energy neutrinos and to the Landau-Pomeranchuk-Migdal (LPM) effect. The LPM effect causes a significant decrease in the cross sections for bremsstrahlung and pair production, allowing charged-current electron-neutrino-induced showers occurring deep in the Earth's crust to be detectable as they exit the Earth into the atmosphere. A search for upward-going neutrino-induced showers in the HiRes-II monocular dataset has yielded a null result. From an LPM calculation of the energy spectrum of charged particles as a function of primary energy and depth for electron-induced showers in rock, we calculate the shape of the resulting profile of these showers in air. We describe a full detector Monte Carlo simulation to determine the detector response to upward-going electron-neutrino-induced cascades and present an upper limit on the flux of electron-neutrinos.Comment: 13 pages, 3 figures. submitted to Astrophysical Journa
    • 

    corecore