161 research outputs found

    Tailoring the interfacial magnetic anisotropy in multiferroic field-effect devices

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.Ferroelectric field-effect devices based on perovskite oxide materials offer a new possibility to exploit emergent interfacial effects such as the electrostatic modification of the transport and magnetic properties of strongly correlated materials and to prove the magneto-electric coupling at the interface between the two different ferroic materials. Here we report on the reversible modulation of the interfacial magnetic and magnetotransport properties of La0.825Sr0.175MnO3 thin films induced by switching the ferroelectric polarization of a top PbZr0.2Ti0.8O3 layer. Anisotropic magnetoresistance (AMR) measurements were performed applying a magnetic field H in a plane perpendicular to the current density. By rotating H from the out-of-plane towards the in-plane direction, upon the ferroelectric polarization switching, a modulation of the normalized AMR amplitude was achieved. The dynamical electrostatic coupling at the interface of the two oxides is responsible for a reconstruction of the Mn3deg orbitals which in turn affects the surface magnetic anisotropy of the magneto-electric system. The present work might have a broader impact, including in the field of multiferroic tunnel junctions, due to a better understanding of the coupling at the interface of the two ferroic oxides where the influence of the polarization on the magnetic degree of freedom is accomplished.D.P. thanks the European Community’s Seventh Framework Programme (FP7/2007-2013) for financial support under Grant Agreement No. NMP3-LA-2010-246102. I.F. acknowledges Beatriu de Pinós postdoctoral scholarship (2011 BP-A 00220) from the Catalan Agency for Management of University and Research Grants (AGAUR-Generalitat de Catalunya).Peer Reviewe

    Anisotropic magnetoresistance in an antiferromagnetic semiconductor

    Get PDF
    arXiv:1303.4704v1.-- et al.Recent studies in devices comprising metal antiferromagnets have demonstrated the feasibility of a novel spintronic concept in which spin-dependent phenomena are governed by an antiferromagnet instead of a ferromagnet. Here we report experimental observation of the anisotropic magnetoresistance in an antiferromagnetic semiconductor Sr2IrO4. Based on ab initio calculations, we associate the origin of the phenomenon with large anisotropies in the relativistic electronic structure. The antiferromagnet film is exchange coupled to a ferromagnet, which allows us to reorient the antiferromagnet spin-axis in applied magnetic fields via the exchange spring effect. We demonstrate that the semiconducting nature of our AFM electrode allows us to perform anisotropic magnetoresistance measurements in the currentperpendicular- to-plane geometry without introducing a tunnel barrier into the stack. Temperature- dependent measurements of the resistance and anisotropic magnetoresistance highlight the large, entangled tunabilities of the ordinary charge and spin-dependent transport in a spintronic device utilizing the antiferromagnet semiconductor.We acknowledge the support from the NSF (Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems, Cooperative Agreement Award EEC-1160504). We acknowledge partial support from the US Department of Energy (J.H.C., S.S. and R.R.) as well as the SRC-FAME programme through UCLA (C.R.-S.). T.J. acknowledges support from the EU European Research Council (ERC) advanced grant no. 268066, from the Ministry of Education of the Czech Republic grant no. LM2011026, from the Grant Agency of the Czech Republic grant no. 14-37427G and from the Academy of Sciences of the Czech Republic Praemium Academiae. X.M. acknowledges the Grant Agency of the Czech Republic No. P204/11/P339. A.B.S.Peer Reviewe

    Unravelling and controlling hidden imprint fields in ferroelectric capacitors

    Get PDF
    Ferroelectric materials have a spontaneous polarization that can point along energetically equivalent, opposite directions. However, when ferroelectric layers are sandwiched between different metallic electrodes, asymmetric electrostatic boundary conditions may induce the appearance of an electric field (imprint field, E imp) that breaks the degeneracy of the polarization directions, favouring one of them. This has dramatic consequences on functionality of ferroelectric-based devices such as ferroelectric memories or photodetectors. Therefore, to cancel out the E imp, ferroelectric components are commonly built using symmetric contact configuration. Indeed, in this symmetric contact configuration, when measurements are done under time-varying electric fields of relatively low frequency, an archetypical symmetric single-step switching process is observed, indicating E imp ∼ 0. However, we report here on the discovery that when measurements are performed at high frequency, a well-defined double-step switching is observed, indicating the presence of E imp. We argue that this frequency dependence originates from short-living head-to-head or tail-to-tail ferroelectric capacitors in the device. We demonstrate that we can modulate E imp and the life-time of head-to-head or tail-to-tail polarization configurations by adjusting the polarization screening charges by suitable illumination. These findings are of relevance to understand the effects of internal electric fields on pivotal ferroelectric properties, such as memory retention and photoresponse.This work is supported by the Spanish Government (MAT2014-56063-C2-1-R) and by the Catalan Government (2014 SGR 734). ICMAB-CSIC authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV- 2015- 0496). Ignasi Fina acknowledges the Beatriu de Pinós postdoctoral scholarship (2011 BP-A_2 00014) from AGAUR-Generalitat de Catalunya. Fanmao Liu is financially supported by China Scholarship Council (CSC) with No. 201306020016. We are thankful to F. Sánchez, and M. Cantoni, for growing the films and making the preliminary characterization of the films, and to M. Stengel for inspiring discussions.Peer Reviewe

    Blocking of conducting channels widens window for ferroelectric resistive switching in interface-engineered Hf0.5Zr0.5O2 tunnel devices

    Full text link
    Films of Hf0.5Z0.5O2 (HZO) contain a network of grain boundaries. In (111) HZO epitaxial films on (001) SrTiO3, for instance, twinned orthorhombic (o-HZO) ferroelectric crystallites coexist with grain boundaries between o-HZO and a residual paraelectric monoclinic (m-HZO) phase. These grain boundaries contribute to the resistive switching response in addition to the genuine ferroelectric polarization switching and have detrimental effects on device performance. Here, it is shown that, by using suitable nanometric capping layers deposited on HZO film, a radical improvement of the operation window of the tunnel device can be achieved. Crystalline SrTiO3 and amorphous AlOx are explored as capping layers. It is observed that these layers conformally coat the HZO surface and allow to increase the yield and homogeneity of functioning ferroelectric junctions while strengthening endurance. Data show that the capping layers block ionic-like transport channels across grain boundaries. It is suggested that they act as oxygen suppliers to the oxygen-getters grain boundaries in HZO. In this scenario it could be envisaged that these and other oxides could also be explored and tested for fully compatible CMOS technologies

    Unraveling the ferroelectric switching mechanisms in ferroelectric pure and La doped HfO(2 )epitaxial thin films

    Get PDF
    Epitaxial orthorhombic phase La doped HfO2 films are promising for achieving robust ferroelectric polarization without wake-up effect. However, lowering the coercive field is crucial for achieving low-power memory devices. In this work, we have investigated the influence of the La content effect on the structural and ferroelectric properties of epitaxial HfO2 thin films. We show that while the remanent polarization is optimum for 2-5 at. % La-doped HfO2 films, the coercive field is decreased with La doping. The experimental work is supported by density functional theory (DFT) calculations which show that the polarization switching in epitaxial La:HfO2 films can be understood based on the synergetic contribution of the presence of a non-ferroelectric monoclinic phase and the La doping itself that causes a reduction of the nucleation and DW motion energy barriers for the crossing path, which makes it more probable than the non-crossing one.Financial support from the Spanish Ministry of Science and Innova- tion (MCIN/AEI/10.13039/501100011033) , through the Severo Ochoa FUNFUTURE (CEX2019-000917-S) , PID2020-112548RB-I00 and PID2019-107727RB-I00 projects, and from Generalitat de Catalunya (2021 SGR 00804) is acknowledged. We also acknowledge project TED2021-130453B-C21, funded by MCIN/AEI/10.13039/501100011033 and European Union NextGeneration EU/PRTR. This work was supported by: (i) the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding Contract UIDB/04650/2020; (ii) exploratory project 2022.01740.PDTC and (iii) the European Unions Horizon 2020 research and innovation pro- gramme under grant agreement No 958174 (M-ERA-NET3/0003/2021-NanOx4EStor) . J. P. B. S. also thanks FCT for the contract under the Institutional Call to Scientific Employment Stimulus - 2021 Call (CEE- CINST/00018/2021) . A.S. also acknowledges FCT for the PhD grant with reference 2022.13796.BD

    Unravelling and controlling hidden imprint fields in ferroelectric capacitors

    Get PDF
    Ferroelectric materials have a spontaneous polarization that can point along energetically equivalent, opposite directions. However, when ferroelectric layers are sandwiched between different metallic electrodes, asymmetric electrostatic boundary conditions may induce the appearance of an electric field (imprint field, E imp) that breaks the degeneracy of the polarization directions, favouring one of them. This has dramatic consequences on functionality of ferroelectric-based devices such as ferroelectric memories or photodetectors. Therefore, to cancel out the E imp, ferroelectric components are commonly built using symmetric contact configuration. Indeed, in this symmetric contact configuration, when measurements are done under time-varying electric fields of relatively low frequency, an archetypical symmetric single-step switching process is observed, indicating E imp ∼ 0. However, we report here on the discovery that when measurements are performed at high frequency, a well-defined double-step switching is observed, indicating the presence of E imp. We argue that this frequency dependence originates from short-living head-to-head or tail-to-tail ferroelectric capacitors in the device. We demonstrate that we can modulate E imp and the life-time of head-to-head or tail-to-tail polarization configurations by adjusting the polarization screening charges by suitable illumination. These findings are of relevance to understand the effects of internal electric fields on pivotal ferroelectric properties, such as memory retention and photoresponse

    High ferroelectric polarization in c-oriented BaTiO3 epitaxial thin films on SrTiO3/Si(001)

    Get PDF
    Scigaj, M. et al.The integration of epitaxial BaTiO3 films on silicon, combining c-orientation, surface flatness, and high ferroelectric polarization is of main interest towards its use in memory devices. This combination of properties has been only achieved so far by using yttria-stabilized zirconia buffer layers. Here, the all-perovskite BaTiO3/LaNiO3/SrTiO3 heterostructure is grown monolithically on Si(001). The BaTiO3 films are epitaxial and c-oriented and present low surface roughness and high remnant ferroelectric polarization around 6 μC/cm2. This result paves the way towards the fabrication of lead-free BaTiO3 ferroelectric memories on silicon platforms.ICMAB-CSIC authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496) and the MAT2014-56063-C2-1-R project, and from Generalitat de Catalunya (2014 SGR 734). Work at Oak Ridge National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. C. H. Chao acknowledges the NSC-CSIC 2014 Summer Program in Spain for Taiwanese PhD students. I. Fina acknowledges Juan de la Cierva – Incorporación postdoctoral fellowship (IJCI-2014-19102) from the Spanish Ministry of Economy and Competitiveness of Spanish Government. INL gratefully acknowledges the European commission and the national French research agency (ANR) for funding, through the projects SITOGA (FP7-ICT-2013-11-619456), TIPS (H2020‐ICT‐02-2014‐1-644453), ANR HIRIS and ANR DIAMWAFEL. INL also acknowledges P. Regreny, C. Botella and J.-B. Goure for MBE technical assistance.Peer reviewe
    corecore