184 research outputs found

    Soluble CD40 ligand predicts ischemic stroke and myocardial infarction in patients with nonvalvular atrial fibrillation

    Get PDF
    OBJECTIVE - Atrial fibrillation (AF) is associated with a high incidence of vascular disease that may be related to a prothrombotic and inflammatory state. Soluble CD40 ligand (sCD40L), which stems essentially from platelet activation, possesses inflammatory and prothrombotic properties. The aim of the study was to assess whether sCD40L is a predictor of stroke or myocardial infarction (MI) in patients with nonvalvular AF. METHODS AND RESULTS - Plasma levels of sCD40L were measured in 231 patients (177 [77%] had permanent or persistent AF, and 54 [23%] had paroxysmal AF). Patients were followed for a mean period of 27.8±8.8 months, and cardiovascular events such as fatal and nonfatal stroke and MI were recorded. AF population was divided in 2 groups according to sCD40L level above or below the median (4.76 ng/mL). The 2 patients' groups had similar distribution of cardiovascular risk factors, age, gender, medications, or serum C-reactive protein levels. During the follow-up period, vascular events occurred in 6 (2 nonfatal MI and 4 nonfatal ischemic strokes) of 116 patients with low levels of sCD40L (5.1%) and in 29 (11 fatal and 3 nonfatal MI; 3 fatal and 12 nonfatal ischemic strokes) of 115 patients with high levels (25.2%) (log-rank test: P<0.001). Using the COX proportional Hazards model, patients with sCD40L above the median were 4.63 times more likely to experience a vascular event (95% C.I.: 1.92 to 11.20). CONCLUSIONS - This study shows that enhanced soluble CD40L level is a predictor of vascular events in patients with nonvalvular AF, thus suggesting that enhanced platelet activation may play a role in its clinical progression. © 2007 American Heart Association, Inc

    Hemidesmus indicus induces apoptosis via proteasome inhibition and generation of reactive oxygen species.

    Get PDF
    Proteasome inhibition represents an important anticancer strategy. Here, we studied the mechanisms at the basis of the pro-apoptotic activity of the standardized decoction of Hemidesmus indicus, a plant evoking a complex anticancer activity, and explored its inhibition of proteasome activity in human leukemia cells. Additionally, we preliminary tested the cytotoxicity of some H. indicus's phytochemicals on leukemia cells and their intestinal absorption on a human intestinal epithelium model consisting of a monolayer of differentiated Caco2 cells. We observed a potent antileukemic effect for H. indicus, imputable to the modulation of different critical targets at protein and mRNA levels and the reduction of the 26S proteasome expression. We found that some phytomarkers of H. indicus decoction passed through the enterocyte monolayer. Overall, our study supports the pharmacological potential of H. indicus, which can represent an interesting botanical drug in the oncological area

    Sulforaphane Potentiates RNA Damage Induced by Different Xenobiotics

    Get PDF
    Background: The isothiocyanate sulforaphane (SFN) possesses interesting anticancer activities. However, recent studies reported that SFN promotes the formation of reactive oxygen species (ROS) as well as DNA breakage. Methodology/Principal Findings: We investigated whether SFN is able to damage RNA, whose loss of integrity was demonstrated in different chronic diseases. Considering the ability of SFN to protect from genotoxicity, we also examined whether SFN is able to protect from RNA damage induced by different chemicals (doxorubicin, spermine, S-nitroso-Nacetylpenicillamine, H2O2). We observed that SFN was devoid of either RNA damaging and RNA protective activity in human leukemic cells. It was able to potentiate the RNA damage by doxorubicin and spermine. In the first case, the effect was attributable to its ability of modulating the bioreductive activation of doxorubicin. For spermine, the effects were mainly due to its modulation of ROS levels produced by spermine metabolism. As to the cytotoxic relevance of the RNA damage, we found that the treatment of cells with a mixture of spermine or doxorubicin plus SFN increased their proapoptotic potential. Thus it is conceivable that the presence of RNA damage might concur to the overall toxic response induced by a chemical agent in targeted cells. Conclusions/Significance: Since RNA is emerging as a potential target for anticancer drugs, its ability to enhance spermineand doxorubicin-induced RNA damage and cytotoxicity could represent an additional mechanism for the potentiatin

    Plasma-activated medium as an innovative anticancer strategy: Insight into its cellular and molecular impact on in vitro leukemia cells

    Get PDF
    Cold atmospheric plasma (CAP) has received attention as a potential anticancer strategy. In this study, culture medium was exposed to a microsecond-pulsed dielectric barrier discharge jet to produce plasma-activated medium (PAM). On the T-lymphoblastic cell line, PAM&nbsp;induced apoptosis through the activation of the intrinsic pathway and inhibited the cell-cycle progression. The use of the scavengers N-acetylcysteine or O-phenantroline significantly decreased the PAM proapoptotic activity. The genetic impact of PAM on TK6 cells was assessed, resulting in an increased micronuclei frequency. PAM exhibited cytotoxic effects even on leukemia cells cultivated in hypoxia, which plays a critical role in promoting chemoresistance. PAM was also tested on normal lymphocytes, showing its partial selectivity. Taken together, these results contribute to understand the pharmacotoxicological profile of CAP

    Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention

    Get PDF
    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint

    Micronuclei formation in liver fibrosis samples from patients infected by hepatitis C virus

    Get PDF
    Genetic research on fibrosis outset and its progression in chronic hepatitis (CH) by hepatitis C virus (HCV) are limited. The lack of cytogenetic data led us to investigate the presence of micronuclei (MNi), as a sign of genomic damage. Hepatocytes of hepatic parenchyma from 62 cases diagnosed with CH associated with HCV and displaying different degrees of fibrosis (F1-F4) were analyzed. These data were compared to 15 cases without fibrosis (F0). Twelve healthy liver parenchyma samples were included as control. All samples were obtained from paraffin-embedded archival material. Micronucleated hepatocytes (MN-Heps) were analyzed through Feulgen/Fast-green staining. Results showed that the rates of MN-Heps in the F4 group were statistically significant (p < 0.05) and higher than those in the control group. Like results were also obtained on comparing F4 with F0, F1, F2 and F3 cases. Conversely, differences were not significant (p > 0.05) on comparing F0, F1, F2, F3, one against the other, as well as individual versus control. Although chromosomal losses in CH were detected, it was shown that liver parenchyma with fibrosis in the initial stages (F1-F3) cannot be considered cytogenetically abnormal

    Mechanisms of action and antiproliferative properties of Brassica oleracea juice in human breast cancer cell lines

    Get PDF
    none7noCruciferous vegetables are an important source of compounds that may be useful for chemoprevention. In this study, we evaluated the antiproliferative activity of juice obtained from leaves of several varieties of Brassica oleracea on both estrogen receptor (ER)-positive (ER; MCF-7 and BT474) and ER-negative (ER; MDA-MB-231 and BT20) human breast cancer cell lines. The effect of juice on cell proliferation was evaluated on DNA synthesis and on cell cycle–related proteins. Juice markedly reduced DNA synthesis, evaluated by [3H]thymidine incorporation, starting from low concentrations (final concentration 5–15 mL/L), and this activity was independent of ER. All cauliflower varieties tested suppressed cell proliferation in a dose-dependent manner. Cell growth inhibition was accompanied by significant cell death at the higher juice concentrations, although no evidence of apoptosis was found. Interestingly, the juice displayed a preferential activity against breast cancer cells compared with other mammalian cell lines investigated (ECV304, VERO, Hep2, 3T3, and MCF-10A) (P 0.01). At the molecular level, the inhibition of proliferation was associated with significantly reduced CDK6 expression and an increased level of p27 in ER cells but not in ER cells, whereas a common feature in all cell lines was significantly decreased retinoblastoma protein phosphorylation. These results suggest that the edible part of Brassica oleracea contains substances that can markedly inhibit the growth of both ER and ER human breast cancer cells, although through different mechanisms. These results suggest that the widely available cruciferous vegetables are potential chemopreventive agents. JopenBrandi, Giorgio; Schiavano, GIUDITTA FIORELLA; Zaffaroni, N; De Marco, C; Paiardini, M; Cervasi, B; Magnani, MauroBrandi, G; Schiavano, Gf; Zaffaroni, N; De Marco, C; Paiardini, M; Cervasi, B; Magnani, M

    Mitochondrial Pathway Mediates the Antileukemic Effects of Hemidesmus Indicus, a Promising Botanical Drug

    Get PDF
    Although cancers are characterized by the deregulation of multiple signalling pathways, most current anticancer therapies involve the modulation of a single target. Because of the enormous biological diversity of cancer, strategic combination of agents targeted against the most critical of those alterations is needed. Due to their complex nature, plant products interact with numerous targets and influence several biochemical and molecular cascades. The interest in further development of botanical drugs has been increasing steadily and the FDA recently approved the first new botanical prescription drug. The present study is designed to explore the potential antileukemic properties of Hemidesmus indicus with a view to contributing to further development of botanical drugs. Hemidesmus was submitted to an extensive in vitro preclinical evaluation.A variety of cellular assays and flow cytometry, as well as a phytochemical screening, were performed on different leukemic cell lines. We have demonstrated that Hemidesmus modulated many components of intracellular signaling pathways involved in cell viability and proliferation and altered the protein expression, eventually leading to tumor cell death, mediated by a loss of mitochondrial transmembrane potential and increased Bax/Bcl-2 ratio. ADP, adenine nucleotide translocator and mitochondrial permeability transition pore inhibitors did not reverse Hemidesmus-induced mitochondrial depolarization. Hemidesmus induced a significant [Ca(2+)](i) raise through the mobilization of intracellular Ca(2+) stores. Moreover, Hemidesmus significantly enhanced the antitumor activity of three commonly used chemotherapeutic drugs (methotrexate, 6-thioguanine, cytarabine). A clinically relevant observation is that its cytotoxic activity was also recorded in primary cells from acute myeloid leukemic patients.These results indicate the molecular basis of the antileukemic effects of Hemidesmus and identify the mitochondrial pathways and [Ca(2+)](i) as crucial actors in its anticancer activity. On these bases, we conclude that Hemidesmus can represent a valuable tool in the anticancer pharmacology, and should be considered for further investigations
    • …
    corecore