130 research outputs found

    Explicit Construction of the Brownian Self-Transport Operator

    Full text link
    Applying the technique of characteristic functions developped for one-dimensional regular surfaces (curves) with compact support, we obtain the distribution of hitting probabilities for a wide class of finite membranes on square lattice. Then we generalize it to multi-dimensional finite membranes on hypercubic lattice. Basing on these distributions, we explicitly construct the Brownian self-transport operator which governs the Laplacian transfer. In order to verify the accuracy of the distribution of hitting probabilities, numerical analysis is carried out for some particular membranes.Comment: 30 pages, 9 figures, 1 tabl

    Transfer across Random versus Deterministic Fractal Interfaces

    Full text link
    A numerical study of the transfer across random fractal surfaces shows that their responses are very close to the response of deterministic model geometries with the same fractal dimension. The simulations of several interfaces with prefractal geometries show that, within very good approximation, the flux depends only on a few characteristic features of the interface geometry: the lower and higher cut-offs and the fractal dimension. Although the active zones are different for different geometries, the electrode reponses are very nearly the same. In that sense, the fractal dimension is the essential "universal" exponent which determines the net transfer.Comment: 4 pages, 6 figure

    Diffusion-Reorganized Aggregates: Attractors in Diffusion Processes?

    Full text link
    A process based on particle evaporation, diffusion and redeposition is applied iteratively to a two-dimensional object of arbitrary shape. The evolution spontaneously transforms the object morphology, converging to branched structures. Independently of initial geometry, the structures found after long time present fractal geometry with a fractal dimension around 1.75. The final morphology, which constantly evolves in time, can be considered as the dynamic attractor of this evaporation-diffusion-redeposition operator. The ensemble of these fractal shapes can be considered to be the {\em dynamical equilibrium} geometry of a diffusion controlled self-transformation process.Comment: 4 pages, 5 figure

    Screening effects in flow through rough channels

    Full text link
    A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This finding is a direct outcome from numerical simulations of the Navier-Stokes equations for flow at low Reynolds numbers in two-dimensional channels with rough walls presenting either deterministic or random self-similar geometries. For high Reynolds numbers, when inertial effects become relevant, the distribution of wall stresses on deterministic and random fractal rough channels becomes substantially dependent on the microscopic details of the walls geometry. In addition, we find that, while the permeability of the random channel follows the usual decrease with Reynolds, our results indicate an unexpected permeability increase for the deterministic case, i.e., ``the rougher the better''. We show that this complex behavior is closely related with the presence and relative intensity of recirculation zones in the reentrant regions of the rough channel.Comment: 4 pages, 5 figure

    Optimal branching asymmetry of hydrodynamic pulsatile trees

    Full text link
    Most of the studies on optimal transport are done for steady state regime conditions. Yet, there exists numerous examples in living systems where supply tree networks have to deliver products in a limited time due to the pulsatile character of the flow. This is the case for mammals respiration for which air has to reach the gas exchange units before the start of expiration. We report here that introducing a systematic branching asymmetry allows to reduce the average delivery time of the products. It simultaneously increases its robustness against the unevitable variability of sizes related to morphogenesis. We then apply this approach to the human tracheobronchial tree. We show that in this case all extremities are supplied with fresh air, provided that the asymmetry is smaller than a critical threshold which happens to fit with the asymmetry measured in the human lung. This could indicate that the structure is adjusted at the maximum asymmetry level that allows to feed all terminal units with fresh air.Comment: 4 pages, 4 figure

    Interplay between geometry and flow distribution in an airway tree

    Full text link
    Uniform fluid flow distribution in a symmetric volume can be realized through a symmetric branched tree. It is shown here, however, that the flow partitioning can be highly sensitive to deviations from exact symmetry if inertial effects are present. This is found by direct numerical simulation of the Navier-Stokes equations in a 3D tree geometry. The flow asymmetry is quantified and found to depend on the Reynolds number. Moreover, for a given Reynolds number, we show that the flow distribution depends on the aspect ratio of the branching elements as well as their angular arrangement. Our results indicate that physiological variability should be severely restricted in order to ensure uniform fluid distribution in a tree. This study suggests that any non-uniformity in the air flow distribution in human lungs should be influenced by the respiratory conditions, rest or hard exercise

    Exponential decay of Laplacian eigenfunctions in domains with branches

    Full text link
    The behavior of Laplacian eigenfunctions in domains with branches is investigated. If an eigenvalue is below a threshold which is determined by the shape of the branch, the associated eigenfunction is proved to exponentially decay inside the branch. The decay rate is twice the square root of the difference between the threshold and the eigenvalue. The derived exponential estimate is applicable for arbitrary domains in any spatial dimension. Numerical simulations illustrate and further extend the theoretical estimate

    In silico modelling to differentiate the contribution of sugar frequency versus total amount in driving biofilm dysbiosis in dental caries

    Get PDF
    Dental caries is the most prevalent infection globally and a substantial economic burden in developed countries. Dietary sugars are the main risk factor, and drive increased proportions of acid-producing and acid-tolerating (aciduric) bacterial species within dental bio lms. Recent longitudinal studies have suggested that caries is most strongly correlated with total sugar intake, contrasting with the prevailing view that intake frequency is the primary determinant. To explore this possibility, we employed a computational model for supragingival plaque to systematically sample combinations of sugar frequency and total amount, allowing their independent contributions on the ratio of aciduric (i.e. cariogenic) to non-aciduric bacteria to be unambiguously determined. Sugar frequency was found to be irrelevant for either very high or very low daily total amounts as the simulated bio lm was predicted to be always or never cariogenic, respectively. Frequency was a determining factor for intermediate total amounts of sugar, including the estimated average human consumption. An increased risk of caries (i.e. high prevalence of aciduric/non-aciduric species) was predicted for high intake frequencies. Thus, both total amount and frequency of sugar intake may combine to in uence plaque cariogenicity. These ndings could be employed to support public guidance for dietary change, leading to improved oral healthcare
    • …
    corecore