A numerical study of the transfer across random fractal surfaces shows that
their responses are very close to the response of deterministic model
geometries with the same fractal dimension. The simulations of several
interfaces with prefractal geometries show that, within very good
approximation, the flux depends only on a few characteristic features of the
interface geometry: the lower and higher cut-offs and the fractal dimension.
Although the active zones are different for different geometries, the electrode
reponses are very nearly the same. In that sense, the fractal dimension is the
essential "universal" exponent which determines the net transfer.Comment: 4 pages, 6 figure