21 research outputs found

    Biofouling and scaling control of reverse osmosis membrane using one-step cleaning - potential of acidified nitrite solution as an agent

    Get PDF
    Biofouling is generally regarded as a major issue in reverse osmosis (RO) membrane filtration. Two-step chemical cleanings with alkaline and acidic agents are typically applied to restore the treatment capacity. In this study, the feasibility of one-step cleaning using free nitrous acid (FNA) was investigated as a novel low cost cleaning agent. The FNA cleaning solution was prepared by acidification of a sodium nitrite solution with hydrochloric acid. Seven fouled RO membranes collected from full-scale wastewater recycling and desalination plants were used to perform lab-scale cleaning trials. Membrane fouling characterisation revealed six of out of seven membranes were mainly bio-fouled, while one membrane was severely fouled by calcium carbonate. This study showed the feasibility of using FNA at pH 3.0 for biomass removal as well as for calcium carbonate scaling removal. The results from the lab-scale cleaning tests suggested that FNA can be used as a single cleaning agent for both biofouling and scaling removal. Cost analysis showed that FNA is a cost-effective solution for biofouling and scaling removal in RO filtration applications

    Drinking water aromaticity and treatability is predicted by dissolved organic matter fluorescence

    Get PDF
    Samples from fifty-five surface water resources and twenty-five drinking water treatment plants in Europe, Africa, Asia, and USA were used to analyse the fluorescence composition of global surface waters and predict aromaticity and treatability from fluorescence excitation emission matrices. Nine underlying fluorescence components were identified in the dataset using parallel factor analysis (PARAFAC) and differences in aromaticity and treatability could be predicted from ratios between components Hii (λex/λem= 395/521), Hiii (λex/λem= 330/404), Pi, (λex/λem=290/365) and Pii (λex/λem= 275/302). Component Hii tracked humic acids of primarily plant origin, Hiii tracked weathered/oxidised humics and the “building block” fraction measured by LC-OCD, while Pi and Pii tracked amino acids in the “low molecular weight neutrals” LC-OCD fraction. Ratios between PARAFAC components predicted DOC removal at lab scale for French rivers in standardized tests involving coagulation, powdered activated carbon (PAC), chlorination, ion exchange (IEX), and ozonation, alone and in combination. The ratio Hii/Hiii, for convenience named “PARIX” standing for “PARAFAC index”, predicted SUVA according to a simple relationship: SUVA = 4.0 x PARIX (RMSEp=0.55) Lmg−1m−1. These results expand the utility of fluorescence spectroscopy in water treatment applications, by demonstrating the existence of previously unknown relationships between fluorescence composition, aromaticity and treatability that appear to hold across diverse surface waters at various stages of drinking water treatment

    The prevalence of badnaviruses in West African yams (Dioscorea cayenensis-rotundata) and evidence of endogenous pararetrovirus sequences in their genomes

    Get PDF
    Yam (Dioscorea spp.) is an important vegetatively-propagated staple crop in West Africa. Viruses are pervasive in yam worldwide, decreasing growth and yield, as well as hindering the international movement of germplasm. Badnaviruses have been reported to be the most prevalent in yam, and genomes of some other badnaviruses are known to be integrated in their host plant species. However, it was not clear if a similar scenario occurs in Dioscorea yam. This study was conducted to verify the prevalence of badnaviruses, and determine if badnavirus genomes are integrated in the yam genome

    Green chemicals to remove biofouling and preserve reverse osmosis membranes

    No full text

    Surface water RO permeate remineralization through minerals recovery from brines

    No full text
    Assisted-Reverse Electrodialysis (A-RED) technology was applied following reverse osmosis (RO) of a surface water resource in order to recover minerals from its brine and directly remineralize the RO unit's permeate. Four different sets of cation/anion exchange membranes were benchmarked using single- and mixed-salts synthetic solutions as well as real brine and permeate streams produced from three-stage reverse osmosis applied to Seine River water. The process, operating under equal permeate and brine channel flows (2 cm/s velocities) and applied voltage varying from 0 to 10 V, showed viable remineralization results. Optimal recovery at 10 V applied allowed increasing permeate mineral content from 20 mg/L CaCO3 up to values of 553 mg/L CaCO3 and from 100 μS/cm up to 1284 μS/cm for hardness and conductivity respectively. Tests using spiked micropollutants showed very low levels of micropollutant passage with over 98% rejection for 15 out of 18 compounds tested while natural organic matter (NOM) breakthrough was 2% on average (0.2 mg C/L)
    corecore