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A B S T R A C T   

Samples from fifty-five surface water resources and twenty-five drinking water treatment plants in Europe, Af
rica, Asia, and USA were used to analyse the fluorescence composition of global surface waters and predict 
aromaticity and treatability from fluorescence excitation emission matrices. Nine underlying fluorescence 
components were identified in the dataset using parallel factor analysis (PARAFAC) and differences in aroma
ticity and treatability could be predicted from ratios between components Hii (λex/λem= 395/521), Hiii (λex/λem=

330/404), Pi, (λex/λem=290/365) and Pii (λex/λem= 275/302). Component Hii tracked humic acids of primarily 
plant origin, Hiii tracked weathered/oxidised humics and the “building block” fraction measured by LC-OCD, 
while Pi and Pii tracked amino acids in the “low molecular weight neutrals” LC-OCD fraction. Ratios between 
PARAFAC components predicted DOC removal at lab scale for French rivers in standardized tests involving 
coagulation, powdered activated carbon (PAC), chlorination, ion exchange (IEX), and ozonation, alone and in 
combination. The ratio Hii/Hiii, for convenience named “PARIX” standing for “PARAFAC index”, predicted SUVA 
according to a simple relationship: SUVA = 4.0 x PARIX (RMSEp=0.55) Lmg− 1m− 1. These results expand the 
utility of fluorescence spectroscopy in water treatment applications, by demonstrating the existence of previously 
unknown relationships between fluorescence composition, aromaticity and treatability that appear to hold across 
diverse surface waters at various stages of drinking water treatment.   

1. Introduction 

Dissolved natural organic matter (DOM) occurs in all surface waters 
where it originates from the decomposition and leaching of vegetation 
and in-situ primary productivity and undergoes continuous biotic and 
abiotic processing (Aiken, 2014; Moran et al., 2016; Moran et al., 1991). 
Natural waters consequently contain thousands of different DOM mol
ecules with varying physicochemical characteristics. Removing DOM is 
a major objective of drinking water treatment, since too much DOM 
protects pathogens, causes aesthetic issues at the tap such as unpleasant 
colour, taste and odour, and leads to harmful by-products being formed 
during disinfection (Leenheer and Croué, 2003; Leenheer et al., 2001). 

Additionally, DOM undermines treatment performance and increases 
costs by increasing coagulant and oxidant demand and fouling mem
branes (Kennedy et al., 2005). Since various organic matter fractions 
respond differently to physical and chemical treatment (Croué et al., 
1993; Edzwald, 1993; Moona et al., 2021), DOM character should 
directly inform the selection and operation of best available treatment 
options. 

An important step toward optimising drinking water treatment is to 
predict the performance of specific treatment barriers (i.e. DOC removal 
efficiency) from the chemical composition of the incoming raw water. 
Waters with similar chemical compositions are expected to respond 
similarly to a given treatment process. For example, specific UV254 

Abbreviations: DOM, Dissolved organic matter; CDOM, Chromophoric dissolved organic matter; SUVA, Specific UV absorbance (UV254/DOC); DOC, Dissolved 
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absorption relative to DOC concentration (SUVA) in water samples is 
directly proportional to percent aromaticity measured by C13 NMR 
(Weishaar et al., 2003). SUVA strongly predicts coagulation perfor
mance across diverse water resources (Archer and Singer, 2006; 
Edwards, 1997) and also predicts other parameters of interest including 
disinfection byproduct formation potential (Edzwald et al., 1985; Hua 
et al., 2015) and potential for membrane fouling (Amy, 2008). 

A disadvantage of SUVA is that to measure it according to standard 
US-EPA method 415.3 requires two different instruments, i.e. a UV 
spectrophotometer and a TOC analyzer (Potter and Wimsatt, 2005). TOC 
analyzers are rare at treatment plants due to expense and operational 
challenges that make them susceptible to a range of analytical in
terferences (Mopper and Qian, 2006). Additionally, commercial TOC 
analyses for drinking water are expensive relative to other monitoring 
parameters and often have relatively high detection limits (>1 mg/L). 
UV spectrophotometers also vary greatly in sensitivity (Mopper and 
Qian, 2006), and the overall result is that SUVA measured at different 
labs can vary significantly even under carefully controlled conditions 
(Potter and Wimsatt, 2005). This makes it difficult for water utilities to 
monitor changes in SUVA, especially when concentrations of DOC 
and/or CDOM are low. Finally, while useful for predicting a range of 
treatment variables, water treatment processes like oxidation (Van 
Geluwe et al., 2011) and adsorption (Newcombe et al., 2002) are not 
well predicted by SUVA, due to their dependence on 
low-molecular-weight DOM fractions that are invisible to UV spectro
photometers. Analysis by liquid chromotography with organic carbon 
detection (LC-OCD) can provide both a more accurate SUVA quantifi
cation and can distinguish and quantify several non-absorbing low-
molecular-weight DOM fractions, but is too costly for routine 
monitoring. Consequently, there is a high value in identifying afford
able, single-instrument approaches to measuring water aromaticity and 
tracking low-molecular-weight DOM fractions in drinking water. 

Fluorescence spectroscopy is increasingly used to study water 
treatment due to high sensitivity and affordability, coupled with two- 
directional wavelength scanning capabilities that inform about water 
character as well as concentration (Ahmad and Reynolds, 1999; Aiken, 
2014; Bhattacharya and Osburn, 2020). Despite accounting for a small 
fraction of the total dissolved carbon pool in aquatic samples, fluores
cent DOM tracks major changes in DOM molecular composition (Kel
lerman et al., 2015; Stubbins et al., 2014; Wünsch et al., 2018a). Raw 
fluorescence measurements capture the sum of fluorescence emitted at 
each excitation and emission wavelength by all dissolved chemicals 
present, thus combining signals from many different fluorophores. 
Accordingly, fluorescence spectroscopy is frequently coupled with par
allel factor analysis (PARAFAC) to mathematically isolate and quantify 
independently-varying DOM fractions (Bro, 1997; Murphy et al., 2014a; 
Stedmon and Markager, 2005b). 

A number of prior studies have used PARAFAC to analyse fluores
cence datasets in the context of water treatment. Shutova and colleagues 
(Shutova et al., 2014) reported linear correlations between between 
ratios of humic-like PARAFAC components vs percent DOC removal in 
treatments involving coagulation. However, in that study as in many 
others (e.g. Murphy et al., 2011; Vines and Terry, 2020), PARAFAC 
models of drinking water resources were site-specific with only modest 
statistical similarities obtained when comparing models from different 
treatment plants. This reflects a serious limitation of the PARAFAC 
approach, namely that selecting a different model tends to produce 
systematically different fluorescence intensities and ratios. This has 
greatly limited the generality of conclusions about DOM behaviour and 
treatability drawn from PARAFAC analyses (Ishii and Boyer, 2012). 

There are two main prerequisites for defining useful global models 
that predict water treatability from fluorescence measurements. The 
first is that the spectral properties of underlying fluorophore groups are 
highly similar between geographically diverse water resources. Fortu
nately, although a diverse array of PARAFAC components appear in 
published literature (Wünsch et al., 2019), there are strong indications 

that a handful of well-described PARAFAC components of apparently 
ubiquitous distribution are responsible for most observed steady state 
fluorescence (Kowalczuk et al., 2009; Murphy et al., 2018; Wünsch 
et al., 2019). Several of these have been shown to respond similarly to 
similar environmental stressors (Ishii and Boyer, 2012; Murphy et al., 
2018; Wünsch et al., 2017), suggesting that it may be possible to use 
PARAFAC components to predict certain aspects of water chemistry 
across aquatic ecosystems. 

A second requirement is that at least some of these PARAFAC com
ponents track chemical characteristics with a deciding influence upon 
water treatability, whether directly or indirectly. Aromaticity, often 
measured as SUVA, is a key property for predicting treatability in con
ventional water treatment as already described. Previously, a “fluores
cence index” (FIX) that tracks the ratio between emissions at a specific 
pair of wavelengths in the visible range, was shown to correlate 
inversely to both aromaticity and SUVA (McKnight et al., 2001; 
Weishaar et al., 2003). Other fluorescence indicies that are investigated 
frequently in the context of drinking water treatability include the 
“freshness” or “biological” index (BIX) and the “humification index” 
(HIX), which attempt to track the ratio of labile to recalcitrant fractions 
(Ohno, 2002; Parlanti et al., 2000). Fluorescence indices have the 
advantage that they are simple to obtain and can indicate 
environmentally-relevant variations in water quality and reactivity 
(Bhattacharya and Osburn, 2020; Korak et al., 2015). However, since 
they are derived from total fluorescence they are susceptible to uncali
brated spectral interferences e.g. from contaminants. It therefore seems 
likely that greater sensitivity for detecting environmentally-relevant 
changes in DOM composition might be achievable from tracking ratios 
between ubiquitous PARAFAC components. 

This study assessed the utility of fluorescence spectroscopy combined 
with PARAFAC for predicting surface water aromaticity and treatability. 
The aim was to first identify the spectral properties of fluorophore 
groups common to geographically diverse drinking water samples, and 
second to identify global relationships between fluorescence, aroma
ticity and molecular composition (LC-OCD fractions) in order to predict 
DOC removal in water samples subject to a standard set of drinking 
water treatments. 

2. Materials and methods 

2.1. Sampling campaigns 

2.1.1. Global campaign 
Filtered (0.45 µm) water samples (N=190) were collected from water 

resources and treatment plants in Europe (France, Sweden, Spain, Italy, 
n=148), USA (n=19), Asia (China, n=6) and Africa (Cameroon, n=3) 
(Table S1). Samples were collected in acid-cleaned and combusted 
amber glass bottles when possible though some were collected in 
sample-washed HDPE bottles to prevent breakage during international 
shipping. Each sample represented a single whole water grab sample 
collected at a particular location on a particular day. Samples from water 
resources were collected from the surface of rivers or lakes or the intakes 
of treatment plants. Sampled treatment plants employed a diverse range 
of treatments ranging from conventional treatment to treatments 
involving membrane filtration (nanofiltration, reverse osmosis), 
adsorption onto activated carbon (GAC, PAC), and advanced oxidation 
(ozone), and samples were collected from various stages in each treat
ment process. 

Samples were air shipped at 4◦C to Paris within 48 h of sampling, for 
fluorescence, absorbance and DOC analysis at Suez research labora
tories. Aliquots from a subset of samples (N=63) were additionally 
shipped in small batches from Paris to Karlsruhe, Germany for analysis 
by LC-OCD. Overall, the time elapsed between sampling and measure
ment ranged from 1-7 days for spectroscopic and DOC analyses and 5-10 
days for LC-OCD analyses. The only exceptions were the samples from 
China which were analysed for LC-OCD at a local university laboratory. 
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2.1.2. Local campaign 
Unfiltered 20 L water samples (“natural Challenge Samples”) were 

collected in clean HDPE drums from five French rivers (Table 1) at the 
intakes to water treatment plants. Each sample (N = 5) was shipped 
overnight to the Suez laboratory where it was subdivided and used in an 
experiment consisting of nine standard treatment tests. Each test 
measured the changes in DOM quantity and character resulting from one 
type of treatment, as detailed in Section 2.4 below. 

Challenge samples from the local campaigns were analysed using 
absorbance and fluorescence spectroscopy, and DOC analysis. Aliquots 
from all samples arising from the Bretagne challenge tests were addi
tionally shipped to Germany for LC-OCD analysis. 

2.1.3. Synthetic NOM samples 
Synthetic challenge samples were prepared by combining three 

natural DOM isolates (reference materials from the International Humic 
Substances Society) with various mineral substances to create a suite (N 
= 20) of samples representing properties that are commonly encoun
tered in raw drinking surface water (Tables S2 and S3). The three DOM 
isolates were Suwannee River (SRNOM), Nordic Reservoir and Mis
sissippi River dissolved at concentrations representative of average 
surface water resources (~3 mgL-1). For each isolate, the mineral 
background was adjusted using CaCl2 to simulate hardness, NaHCO3 to 
simulate alkalinity and Kaolinite added to simulate turbidity. Aliquots 
from all samples arising from the SRNOM + 100 mgL-1 CaCO3 challenge 
experiment were shipped to Germany for LC-OCD analysis. 

2.2. Analytical methods 

DOC analysis was performed in the Suez Lab using a benchtop 
analyzer (Aurora 1030W, OI instruments) that uses persulfate wet 
oxidation to quantify organics in water samples. UV absorbance at 254 
nm, representing chromophoric dissolved organic matter (CDOM), was 
measured using a Nanocolor UV/Vis II (Macherey Nagel) and was used 
in combination with DOC to calculate specific UV absorbance (SUVA =
UV254/DOC). 

A spectrophotometer (Aqualog, Horiba-Jobin Yvon) was used to 
measure fluorescence excitation emission matrices (EEMs) on the 
filtered water samples. EEMs were made from scans across the selected 
range of excitation wavelengths (excitation 210-620 nm with 5-nm 
bandpass), with emission spectra simultaneously recorded by CCD de
tector (220-800 nm at 4-nm increments). Fluorescence data exported 
from the AquaLog were fully corrected for instrumental and sample- 
related biases. First, spectral corrections accounting for wavelength- 
related biases were applied using factory-generated excitation and 
emission correction factors. Second, fluorescence quenching caused by 
sample self-shading (inner filter effect) was corrected in the instrument, 
using correction factors derived from the fluorometers’s simultaneously 
collected absorbance spectrum (Kothawala et al., 2013). 

LC-OCD analyses were performed by DOC-Labor in Karlsruhe, Ger
many, according to published procedures (Huber et al., 2011). This 
technique uses size exclusion chromatography to quantify five DOC 
subfractions, operationally classified as low-molecular weight (LMW) 
neutrals (alcohols, aldehydes, ketones, amino acids, sugars, <350 g 
mol− 1), LMW acids (aliphatic organic acids, <350 g mol− 1), building 

blocks (BB) representing deaggregated chains of polyphenolics and 
polyaromatic acids formed during the breakdown of humic substances, 
300-500 g mol− 1), humic substances (HS, 500-1000 g mol− 1) comprising 
a mixture of humic acids containing carboxyl and phenolate groups, and 
biopolymers (>1000 g mol− 1). LC-OCD analysis also measures DOC 
concentration and SUVA (total UV absorbance / total DOC). 

2.3. Statistical methods 
Parallel Factor Analysis was used to mathematically decompose the 

global fluorescence EEM dataset according to well-established meth
odologies (Bro, 1997). PARAFAC identifies the unique underlying 
spectra of a fixed number of independent components that sum to 
reproduce the measured EEMs with least error and determines the 
relative concentrations (Fmax) for each component. Modelling was 
implemented using the drEEM toolbox in MATLAB (Murphy et al., 
2013). Extensive modelling iterations confirmed that a nine-component 
model provided the best fit to the dataset. However, only 
post-membrane samples from a pilot plant contained the ninth compo
nent; and this component had spectral properties indicating a whitening 
agent (Section 3.3). After excluding outlier samples affected by whit
ening agents, only eight components remained in the model. The 
8-component model was validated both by split-half analysis (S2T1), 
and by separately modelling short-wavelength (protein-like) and longer 
wavelength (humic-like) regions of each EEM and fusing the resulting 
spectra. After the model was finalized, the fluorescence EEMs from 
challenge samples and outliers were projected on the model, producing 
Fmax for every sample in the study. 

Fmax ratios were determined by dividing Fmax for one PARAFAC 
component by Fmax for another. Regression equations relating Fmax ra
tios with other measurements were determined in MATLAB (2020a) 
using either a standard linear model for small sample sizes (N ≤ 5) or a 
robust linear model determined by iteratively reweighted least squares 
regression (N ≥ 10) (Holland and Welsch, 1977). To determine predic
tion errors (RMSEp) for regression analyses, regression models were 
tested on a prediction dataset consisting of randomly selected samples 
that had not been used to develop the regression model. In the case of 
regressions involving PARAFAC components, the prediction dataset 
consisted of the five challenge samples together with 19 other samples 
that were collected after the model had been finalized. For these sam
ples, PARAFAC scores were determined by projecting the EEMs on the 
existing PARAFAC model, then regression fits were determined by 
projecting those scores on the existing regression equations. In the case 
of fluorescence ratios, the prediction samples were selected randomly by 
algorithm, then projected on the regression equation derived from the 
remaining samples. 

2.4. Treatability experiments 

The natural and synthetic challenge samples were submitted to nine 
different treatments at bench-scale (Table 2). First, samples were 
equilibrated with lab atmosphere and temperature then divided into 
subsamples that were individually submitted to one test. Coagulation, 
enhanced coagulation, powdered activated carbon (PAC), ion exchange 
(IEX), and chlorination were each tested individually. Ozone (O3) was 
tested individually and in combination with coagulation, IEX and PAC. 

Table 1 
Properties of natural river water samples in the challenge dataset  

River Sampling date Alkalinity Hardness Turbidity DOC UV254 SUVA  
(mgL− 1 CaCO3) (mgL− 1 CaCO3) (NTU) mgL− 1 (m− 1) (Lmg− 1m− 1) 

Seine 3/2018 270 270 8 2.5 6.1 2.4 
Sarthe 4/2018 150 120 7 5.7 17.5 3.1 
Loire 4/2018 70 50 54 5.6 18.4 3.3 
Bretagne 6/2018 80 30 5 2.9 11.9 4.2 
Nancy 6/2018 60 50 10 3.6 12.5 3.5  
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These tests were completed using a jar test set-up with 1L cylindrical 
beakers. Ozone was tested using a specially designed container allowing 
for gas injection through a septum. 

The contact times and chemical doses corresponded to convention
ally applied operational conditions for lab-scale simulation of surface 
water treatment plants. Ferric chloride coagulant, SA Super powder 
activated carbon and Amberlite IRA458Cl ion-exchange resin were 
selected due to their specific capacity for organic matter removal. The 
same doses were administered to each synthetic and natural water 
sample. Since the synthetic samples each had similar DOC concentra
tions, they each received similar effective doses, making removal a 
function of only DOM source and mineral matrix. DOC concentrations in 
the natural water samples varied between 2.5-5.7 mgL-1, making 
removal a function of both DOM source and effective dose. Two natural 
samples had nearly identical DOC concentrations (Sarthe, Loire) and 
received similar effective doses. 

3. Results and discussion 

3.1. Fluorescence composition 

Fig. 1 depicts the spectral properties of all nine PARAFAC compo
nents identified in the global EEM database and Table 3 lists their sim
ilarity with published spectra (Tucker congruence coefficient, TCC) 
according to the OpenFluor database (Murphy et al., 2014b) which at 
the time of writing contained 237 published PARAFAC models. Raw 
spectral data for the PARAFAC components in this study will be made 
available upon publication in OpenFluor (“Suez_9C”). 

Five identified components (Hi, Hii, Hiii, Hiv, Wi) each had emission 
maxima at wavelengths longer than 400 nm as is characteristic for 
fluorescence derived from humic- and fulvic-like organic matter. All 
have been identified previously and recent studies highlight their 
apparently ubiquitous distribution (Table 3). Three published PARAFAC 
models of drinking water samples are particularly strongly congruent. A 
5-component model of Swedish river water “Kungalv_5” (Moona et al., 
2021) is practically a perfect match for five components in the current 
model (Fig. S1). Additionally, five of six PARAFAC components in the 

Table 2 
Operational conditions in lab-scale treatability experiments  

Treatment Code Chemicals Doses Method details 

Coagulation Coag FeCl3 commercial 
solution (40%) 

40 mgL-1 3 min flash mix (200 rpm) followed by 17 min of slow mixing (40 rpm) and at least 10 min 
of settling Enhanced 

coagulation 
Adv. 
Coag 

200 mgL-1, pH adjusted to 
5.8 

PAC PAC SA Super (NORIT) 40 mgL-1 

Ion Exchange IEX Amberlite IRA458Cl 5 mL of activated resin in 1L, 
200 BV equivalent 

15-min mixing at 150 rpm followed by 15min of settling 

Ozonation O3 Ozone 3 mgL-1 5-min contact time, manual shaking, verification of no residual ozone 
O3 + coagulation O3 +

coag. 
Ozone and FeCl3 3 mgL-1 O3, 40 mgL-1 FeCl3 5-min O3 contact time with shaking followed by coagulant injection with 3 min flash mix 

(200 rpm) followed by 17min of slow mixing (40 rpm) and at least 10min of settling 
O3 + PAC O3 +

PAC 
Ozone and SA Super 3 mgL-1 O3, 40 mgL-1 PAC 

O3 + IEX O3 +

IEX 
Ozone and IRA458Cl 3 mgL-1 O3, 5 mL of resin 5-min O3 contact time with shaking followed by resin injection with 15 min mixing at 150 

rpm followed by 15min of settling 
Chlorination Chlor. Chlorine 3 mgL-1 5-min contact time, quenched with NH4Cl  

Fig. 1. Underlying components in the nine component PARAFAC model include ubiquitous humic-like fractions (Hi-iv, top row), protein-like fractions (Pi-iii) and 
wastewater signals that may be related textile products and optical brighteners (Wi-ii) . 
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SAB6 model of seawater from the South Atlantic Bight (Kowalczuk et al., 
2009) are very highly congruent (correlation coefficients exceeding 0.97 
when comparing excitation or emission spectra). Finally, three compo
nents in drinking water models from Australia and Sweden (“Model D” 
and “DW_Sweden_Gavle”, respectively) are similarly highly congruent 
(Heibati et al., 2017; Shutova et al., 2014). 

Component Hi coincides with the “fulvic-like” “C” peak position 
(Coble et al., 1990) with spectrally similar components common to 
virtually all PARAFAC models of DOM fluorescence (Table 3). In sam
ples from diverse freshwater systems, Hi is typically the first or second 
most important/abundant component in the model accounting for a 
large proportion of total variability. Hi tends to covary with Hii in sur
veys from river to sea, with the latter being associated with higher 
aromaticity and greater susceptibility to flocculation processes in nat
ural systems and water treatment (Kothawala et al., 2014; Yamashita 
et al., 2010). In PARAFAC models with only three or four components, 
Hi and Hii are often combined indicating stable relative abundances 
across many datasets (Wünsch et al., 2019). However, Hii has more 
humic character and represents are more aromatic and higher-molecular 
weight fraction than Hi (Cuss and Guéguen, 2015). 

Component Hiii is reported to represent soluble microbial products 
other than proteins (Wells et al., 2022) and is typically abundant in 
wastewater DOM and at agriculturally-impacted and eutrophic sites 
(Stedmon and Markager, 2005a; Yamashita et al., 2010). Its emission 
peak overlaps with the position of the microbial “M” peak (Coble, 1996; 
Stedmon and Markager, 2005b; Wünsch et al., 2019), although “M” also 
captures emission wavelengths associated with Hi and Hiv. Although 
produced by microbial activity Hiii is itself resistant to biological 
degradation (Ishii and Boyer, 2012; Moona et al., 2021) and tends to 
accumulate in sediments (Krasner et al., 1996). Hiii is additionally 
resistant to coagulation/flocculation (Kothawala et al., 2014) and has 
been implicated in irreversible membrane fouling (Ly et al., 2018). 

Component Hiv has a broad peak with slightly longer emission maximum 
than Hiii and is only typically found in models having four or more 
humic-like components, sometimes with a spectral shape indicating a 
combination of protein-like and humic-like fractions (Kowalczuk et al., 
2010; Murphy et al., 2018; Wells et al., 2022). Unlike Hiii, Hiv is readily 
biodegraded (Cohen et al., 2014; Moona et al., 2021). The large spectral 
overlap between Hiii and Hiv despite different sources and reactivities 
accounts for sometimes contradictory reports regarding the behaviour of 
components responsible for peak M fluorescence. 

Components Pi and Pii match protein-like fluorescence similar to 
pure tryptophan (Pi) and pure tyrosine (Pii). Pi emits at slightly longer 
wavelengths than is usually observed for pure tryptophan (λem ~ 330- 
350) and may represent multiple unresolved protein-like fluorophores. 
Signals similar to Piii have been reported from Chinese surface waters 
(Yang et al. 2019; Huang et al., 2022) and from petroleum-derived 
fluorescence (Zito et al., 2019) although this does not preclude the 
possibility of a biological origin. 

Only two components identified in this study are previously unre
ported from drinking water resources. One of these, Wi, is a near-perfect 
spectral match for a component identified previously as pulp mill 
effluent (Cawley et al., 2012); it was abundant only in the challenge 
sample from river Nancy (Fig. S2) where several pulp mills are located 
upstream of the sampling location. The other (Wii) matches a spectrum 
isolated from wastewater (Cohen et al., 2014) and has a multi-peaked 
emission spectrum characteristic of optical brighteners that are used 
widely in textile and paper industries (Fig. S1). In this study, Wii was the 
ninth component and observed only in some samples of membrane 
permeates and not in any challenge test samples. The isolation of these 
components from a diverse drinking water dataset highlights the 
sensitivity of fluorescence spectroscopy in combination with PARAFAC 
for detecting the potential organic contamination of drinking water 
samples. 

3.2. Surface water aromaticity 

SUVA in the dataset ranged between 1.0 and 5.5 Lmg− 1m− 1 and thus 
spanned a range from low to very high aromaticity. Fig. 2 shows cor
relations between established and newly derived predictors of surface 
water aromaticity. In the first two subplots, raw water samples 
accounted for most measurements in the upper right portion of each 
subplot (SUVA 1.7 - 5.5, mean 3.1 ± 0.8 Lmg− 1m− 1) and partially or 
fully treated water samples accounted for the lower left portion (SUVA 
1.0 – 3.7, mean 1.8 ± 0.6 Lmg− 1m− 1). However, a single linear 
regression line fits all samples equally well, with no indication that 
treatment altered the underlying relationship between SUVA and 
fluorescence. 

A better predictor of SUVA discovered in this study was the ratio 
between Fmax for the longest emitting PARAFAC component (Hii, 
λem=520 nm) versus the shortest emitting component within the 
“humic” region (Hiii, λem=404 nm), hereafter referred to Hii/Hiii or 
“PARIX” standing for “PARAFAC Index”. Note that Hiii fluorescence 
overlaps spectrally with component Hiv (λem=420 nm), although these 
two signals have distinct sources and behave differently during water 
treatment (see further below). 

In Fig. 2, circular markers indicate the calibration dataset, i.e., 166 
samples from Cameroon, China, France, Italy and USA that were 
included when building the PARAFAC model, of which 53 had matching 
LC-OCD measurements. Red stars indicate the prediction dataset, con
sisting of samples that were excluded from PARAFAC modelling. The 
prediction dataset consists of 24 samples from Spain, USA and France 
(including the five natural Challenge Samples) of which 10 samples had 
LC-OCD measurements. For prediction samples, PARAFAC scores were 
estimated by projecting the sample EEMs on the model. With the one 
exception described below, no data points were omitted from any graph, 
so the depicted correlations are robust across continents and ecosystems 
with visible outliers that show the range of departure to be expected due 

Table 3 
Description of fluorescent fractions according to PARAFAC analysis  

Name peak 
position 
(λ2′

ex/λem) 

No. matches in 
OpenFluor 
(TCCex >0.95/ 
TCCem >0.98) 

Possible sources 
/ previous 
attributions 

Ref. (top matches) 

Hi 360/455 33 Humics: 
ubiquitous F450 

Garcia et al. 2018; 
Cardenas et al. 
2017; Kowalczuk 
et al., 2009 

Hii 395/521 36 Conjugated 
humics: 
ubiquitous F520 

Moona et al. 2021; 
Wünsch et al. 
2017; Murphy 
et al. 2018 

Hiii 330/404 16 Microbially- 
linked humics: 
ubiquitous F400 

Asmala et al. 
2018; Kulkarni 
et al. 2017;  
Yamashita et al. 
2010 

Hiv 300/430 49 Terrestrial 
humics: 
ubiquitous F420- 

430 

Wünsch et al. 
2018b; Moona 
et al. 2021 

Wi 275/434 1 Pulp/paper 
industry 
contaminant 

Cawley et al. 2012 

Pi 290/365 4 Amino acids- 
tryptophan 

Murphy et al. 
2013; Zito et al. 
2019; Kowalczuk 
et al., 2009 

Pii 275/302 6 Amino acids- 
tyrosine 

Wünsch et al. 
2015 

Piii 275/323 2 Petroleum 
derivatives  

Zito et al. 2019;  
Yang et al. 2019;  
Huang et al. 2022 

Wii 375/385 1 Optical 
brightener 

Cohen et al. 2014  
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to combined sampling, measurement, and modelling errors. The single 
exception was the HIX subplot, where six extreme outliers from France 
and China were removed for visual clarity (HIX in the range of 0.15-0.6 
and PARIX below 0.5). 

Fig. 2a correlates PARIX with SUVA measurements made according 
to the traditional (USEPA) method and by LC-OCD. A much stronger 
linear correlation is seen with the LC-OCD dataset than with the tradi
tional SUVA dataset, indicating that much of the scatter among grey 
points in Fig. 2a is attributable to measurement error in the traditional 
SUVA dataset. For this reason, and because it is typical to favour the LC- 
OCD dataset in cases of disagreement (Hutchins et al., 2017), the 
LC-OCD dataset was used to derive equations to predict SUVA from 
fluorescence. Fig. 2a-b and Table 4 show that SUVA in the calibration 
dataset could be estimated with good accuracy by simply multiplying 
PARIX by a constant equal to four (RMSEc = 0.64 Lmg− 1m− 1). This 
applied to surface water samples in various stages of water treatment 
and was the case even for the prediction dataset, i.e., when this ratio was 
estimated by projecting new EEMs upon the pre-existing PARAFAC 
model (RMSEp = 0.55 Lmg− 1m− 1). Note that the magnitude of the 

constant in a regression equation involving PARAFAC components de
pends on their spectral ranges and shapes. Thus, this constant may vary 
between datasets if fitted with slightly different PARAFAC components. 
Conversely, a general result e.g., a linear relationship between SUVA 
and the ratio of components representing Hii and Hiii, would be expected 
to hold for two different PARAFAC models. 

It is relevant to compare the predictive power of PARIX with the 
predictive power of FIX and other well established fluorescence indices. 
Fig. 2c-d shows that FIX is non-linearly correlated to SUVA and PARIX, 
which mirrors early observations of nonlinearity between FIX and 
aromaticity when measured by NMR (McKnight et al., 2001). Other 
indices that primarily track the ratio between tryptophan-like and 
humic-like fluorescence (Freshness Index or BIX, and HIX) (Ohno, 2002; 
Parlanti et al., 2000) also show some non-linearity plus significant 
scatter when correlated with PARIX (Fig. 2c, e, f). 

Table 4 lists robust regression equations and fit statistics for pre
dicting SUVA from fluorescence ratios and PARIX. Since these re
lationships were developed from diverse raw and treated surface waters 
from three continents, they may hold widely for freshwaters in other 
geographical locations, except for scaling factors that will apply to 
PARIX estimated using different PARAFAC models. Overall, the estab
lished indices each had weaker correlations and lower accuracy for 
predicting SUVA compared to PARIX (Table 4). Furthermore, PARIX was 
only marginally worse at predicting SUVA measured by LC-OCD than 
was SUVA measured according to the standard method (Table 4). This is 
presumably due the higher measurement precision of fluorescence 
measurements compared to absorbance and DOC measurements. 

3.3. Treatability 

Fig. 3 compares treatment efficiencies determined in bench-scale 
experiments on natural and synthetic challenge samples. Treatment ef
ficiencies are shown as percent removals of bulk DOM (DOC), its total 
chromophoric fraction (CDOM) and its total fluorescent fraction 
(FDOM). Differences in treatment efficiencies between the synthetic 

Fig. 2. Relationships between SUVA, Hii/Hiii (PARIX) and traditional fluorescence indices (FIX, BIX, HIX) in raw and treated surface waters from six countries. Units 
of SUVA are Lmg− 1m− 1; all other depicted parameters are unitless. Regression equations and fit statistics are in Table 4. 

Table 4 
Equations for predicting SUVA by robust linear regression on one variable. Note 
that regression constants may vary between models using different spectra to 
model Hii, Hiii and Pi due to different scaling factors. SUVALC in the dataset 
ranged from 0.99-5.0 and PARIX from 0-1.3.  

Predicted: 
y 

Predictor: x Equation Ncal, 
Npred 

Rc
2 RMSEc RMSEp 

SUVALC SUVAtrad 1.12x 47, 16 0.87 0.45 0.40 
SUVALC PARIX (Hii/ 

Hiii) 
4.0x 47, 16 0.78 0.64 0.55 

SUVALC Hii/Pi 1.4+1.3x 53, 10 0.70 0.60 0.47 
SUVALC FIX 11.4- 

5.40x 
47, 16 0.55 0.75 0.62 

SUVALC BIX 6.5-5.25x 47, 16 0.51 0.75 0.57 
SUVALC HIX 2.8-0.90x 47, 16 0.16 1.0 0.76  
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samples were negligible, even when deliberately varying their back
ground mineral content, thus Fig. 3 shows average removals for the 
complete set of trials performed with each isolate. Fig. 3 shows several 
expected trends including much better removal of CDOM than DOC and 
slightly better removal of FDOM than CDOM. Exceptions included IEX 
and PAC, which had similar removal efficiencies for DOC as for CDOM. 

The isolates showed little variation in removal efficiencies when 
subjected to a particular treatment, whereas the natural samples showed 
a wider range consistent with their variable DOM characters. Removal 
efficiencies for the isolates generally tracked the highest removal effi
ciencies measured for natural samples, i.e. similar to the Bretagne 
sample in treatments involving coagulation, and similar to the Seine 
sample in treatments involving PAC and ozonation. Biopolymers were 
largely excluded in the process of extracting DOM isolates (Table S4), 
and this may have resulted in water that is relatively easy to treat by a 
wide range of processes. 

Applied on its own, ozonation did not significantly remove DOC from 
river samples. This is consistent with results from prior studies demon
strating that larger molecular weight fractions (humics and bio
polymers) are not removed by ozonation so much as converted to lower 
molecular weight fractions (Sarathy and Mohseni, 2007). Additionally, 
pre-ozonation did not improve DOC removal when followed by PAC, IEX 
or coagulation, but did improve the removal of CDOM and FDOM, 

particularly for the Seine sample. This does not seem to reflect a varia
tion in ozone dose since both Seine and Bretagne samples had a similar 
DOC concentration, but for Bretagne only, pre-ozonation had little 
effect. 

DOC removal by conventional coagulation was high especially 
among samples with high SUVA (Bretagne, Nancy), as has been reported 
in many previous studies (Archer and Singer, 2006; Edwards, 1997). The 
performance of PAC and IEX for removing DOC was rather similar across 
all natural and synthetic samples (35.5 ± 6 % and ± 3 % respectively), 
suggesting that all these had similar-sized adsorbable (around 27 - 45%) 
and “charged” (31 - 40%) fractions. PAC removed slightly greater pro
portions of chromophoric and fluorescent material than did IEX (43% 
and 56% compared to 38% and 42%). 

Fig. 4 compares the average performance of each treatment barrier 
when removing fluorescent DOM fractions from natural and synthetic 
waters. Consistent with earlier results (sections 3.1 and 3.2), perfor
mance on synthetic challenge samples was always better than, or equal 
to, performance on the natural samples. However, comparing natural 
and synthetic samples, each fraction’s relative treatability by different 
treatment barriers was strikingly similar. 

Overall, humic-like components Hi, Hii, Hiv, and Wi were well 
removed by coagulation, but Hiii was removed relatively poorly. Pub
lished reports on the behaviour of components like Hiii are often 

Fig. 3. Treatment efficiency (% removal) for DOC, CDOM and FDOM in natural (left) and synthetic challenge samples (right). Each sample was subjected to nine 
different treatments as defined in Table 2. The natural samples were sourced from five French rivers: Bretagne , Loire , Seine , Nancy , and Sarthe. The synthetic 
samples were DOM isolates from Suwanee River, Nordic Reservoir, and Mississippi River. 
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contradictory because many PARAFAC models have Hiii and Hi com
bined in a single component, although in models where they are sepa
rated, the two vary independently (Chen et al., 2010; Ishii and Boyer, 
2012; Palma et al., 2021). This is probably the reason why Hiii is 
sometimes described as being of terrestrial (allochthonous) origin, and 
sometimes as ‘microbially-derived’ (autochthonous). In this study, the 
only treatments that effectively removed Hiii involved ozonation. Simi
larly, protein-like components Pi and Pii were always difficult to treat 
(the low abundance of Piii precluded studying its removal efficiency). 
PAC or ozone in combination with other barriers were most effective at 
removing protein-like fluorescence. 

3.4. Predicting treatability from FDOM ratios 

Fig. 5 shows treatability results for the five French rivers. Since there 
were nine different treatments to apply, only a small number of different 
raw waters could be tested, however SUVA in these samples spanned 
most of the normal range observed in freshwater systems (approx. 1.6 – 
6) (Kellerman, 2015; Massicotte et al., 2017; Weishaar et al., 2003) and 
in total Fig. 5 shows data from 40 separate pilot tests. 

Treatability, assessed as percent DOC removal, was generally well 
predicted from the fluorescence composition of raw river, when repre
sented as ratios between Hiii and either Hii, Pi or Pii. Especially, since 
PARIX was highly correlated with SUVA, it was also an excellent pre
dictor of water treatability by any process in which aromaticity plays a 
deciding role, especially coagulation and ozonation and combinations 
thereof. In contrast, there was typically no correlation between initial 
DOC concentration and DOC removal which indicates that differences in 
effective dose was not a major factor determining treatability in these 
experiments. This is seen by the Seine and Bretagne samples occupying 
the extremes of most graphs despite these samples having similar initial 
DOC concentration. There were two treatments for which DOC removal 
was uncorrelated with fluorescence composition but was somewhat 
correlated with initial DOC concentration; these were enhanced coag
ulation (R2 = 0.72) and ozonation combined with ion exchange (R2 =

0.47). 
Fig. 5 shows that high PARIX resulted in strong coagulation and 

ozonation performance, while low PARIX resulted in better performance 
by ion-exchange. Since LC-OCD analysis confirmed that low PARIX 
indicated of a higher proportion of LMW molecules (see below), water 
with lower PARIX might be expected to adsorb more strongly onto 
activated carbon (Shimabuku et al., 2017)); however, this was not 
observed for the tested river waters. Instead for PAC, treatability was 

strongly correlated to Pi/Hiii and uncorrelated to PARIX. Previous work 
indicates that adsorption onto activated carbon involves a complex 
interplay of factors related to molecular size, polarity and aromaticity as 
well as the number and size of available adsorption sites, thus can vary 
over time and according to the degree of saturation of the carbon sub
strate (Lee and Hur, 2016; Moona et al., 2018). This leads to apparently 
contradictory results whereby adsorption may be favoured by either 
high aromaticity or low molecular size, depending on substate proper
ties and water chemistry. In this study, the relationship between Pi/Hiii 
and DOC removal by PAC indicates a competition for adsorption sites 
within the lower molecular weight fraction, with Hiii excluding small 
amino acids and non-fluorescent molecules from PAC adsorption sites. 

3.5. Fluorescence surrogates of LC-OCD fractions 

Correlations between fluorescence and LC-OCD measurements were 
explored after first normalising LC-OCD concentrations to humic sub
stance (HS) concentration, and normalising fluorescence parameters to 
Hii intensity. This avoids apparently strong correlations driven by con
centration artefacts, i.e., higher DOM concentrations tended to produce 
higher signals for both fluorescence and LC-OCD parameters. Addi
tionally, eight samples with HS concentration below 600 μg/L were 
deleted due to low signal to noise, leaving 60 samples in the dataset. 

The aromaticity index was strongly correlated to nominal molecular 
weight, as would be expected from its relationship with SUVA (Fig. 6). 
The inverse of PARIX was strongly positively correlated to (HS-nor
malised) concentrations of building blocks. The regression equation goes 
through the origin (BB/HS = 0.19/PARIX, RMSE=0.073, R2=0.86) 
indicating a parsimonious model with good predictive capacity. Hiv/Hii 
was also positively correlated to normalised building block concentra
tions (BB/HS = 0.20* Hiv/Hii, RMSE=0.144, R2=0.73). The building 
block fraction in LC-OCD analysis is attributed to weathering and 
oxidation products of humic substances (Huber 2011). This aligns with 
interpretation that Hiii is due to aquagenic refractory organic matter 
with relatively high N:C ratio, whereas Hiv represents labile degradation 
products, including photochemically-produced DOM (Murphy et al., 
2018). The building block fraction is of lower molecular weight than 
other humic substances and experiments have shown it to be poorly 
removed by coagulation/flocculation (Huber et al., 2011), which is 
consistent with the treatability tests (Fig. 5). 

Several weaker correlations were seen between (Hii -normalised) 
fluorescence intensities and (HS-normalised) concentrations of LMW 
neutrals. The inverse of PARIX was moderately correlated (LMWn/ 

Fig. 4. Treatment barrier performance for removing fluorescent DOM fractions as defined in Table 3. Lines show average removal efficiency for five natural (A) and 
three synthetic (B) challenge samples when subjected to nine different treatment barriers (see Table 2). 
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HS=0.04+0.14/PARIX, R2=0.67, RMSE=0.091) as was Pi/Hiii (LMWn/ 
HS=0.16+0.07*Pi/Hii, R2=0.63, RMSE=0.080). Tryptophan-like Pii 
was only weakly correlated with LMW neutrals (R2 < 0.5) due to 
considerable scatter. Positive correlations with tyrosine-like and 
tryptophan-like fluorescence are expected since amino acids belong to 
the LMW neutral fraction (Huber 2011). However, the correlation with 
Hiii may be indirect rather than causal, i.e., a result of degradation 
processes tending to produce both amino acids and building blocks at 
the same time. 

There were no correlations observed between any fluorescence 
component and either biopolymers or LMW acids. An earlier study of 
drinking water treatment reported a link between biopolymer 

concentrations and protein-like fluorescence (Baghoth et al., 2011)); 
however, in that analysis the LC-OCD measurements were not normal
ised to DOC which is needed to account for bulk DOC removal between 
treatment steps, and hence nearly all investigated correlations were 
highly statistically significant. Hutchins and co-workers (Hutchins et al., 
2017) reported that tryptophan-like fluorescence and biopolymers co
varied along a stream-water continuum, after first normalising 
tryptophan-like fluorescence to total fluorescence and biopolymers to 
DOC concentration. Although they did not draw attention to additional 
correlations, their principal components analysis additionally indicated 
the existence of correlations that closely match this study, i.e., between 
components similar to Hiii and Hi and both the building block and LMW 

Fig. 5. Relationship between surface water composition and its treatability (DOC removal) in challenge experiments. The symbols depict experiments on samples 
from five french rivers: Bretagne (circle), Nancy (diamond), Seine (square), Loire (triangle) and Sarthe (star). 
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neutral fractions. 
These relationships help to explain the differences in treatability 

observed for the Seine and Bretagne challenge samples. Despite similar 
initial DOC, the Seine sample was most susceptible to PAC treatment 
whereas the Bretagne sample was most susceptible to coagulation 
(Fig. 5). In their PARAFAC decompositions (Fig. S3) both were domi
nated by Component Hi; however, the Seine sample had higher Pi/Hii 
and Pii/Hii in addition to lower PARIX and Pii/Hiii (1.3, 0.3, 0.5 and 0.15 
respectively) indicating low susceptibility to coagulation, due to a high 
proportion of LMW neutrals and building blocks, but only moderate 
susceptibility to PAC adsorption, due to relatively high Hiii compared to 
Pii. In contrast, the Bretagne sample had lower Pi/Hii and Pii/Hii and 
higher PARIX and Pii/Hiii (0.6, 0.15, 1.4 and 0.2 respectively), indicating 
high aromaticity and susceptibility to both coagulation and PAC, but less 
susceptibility to ion exchange. 

3.6. The molecular basis of PARIX 

Recent studies have attempted to deduce the molecular origin of 
DOM fluorescence by linking fluorescence spectroscopy with ultrahigh- 
resolution mass spectrometry. The usual approach is to obtain a 
collection of samples, subsampled and measured by each of the two 
analytical techniques, and search for post-hoc correlations between the 
two datasets (Herzsprung et al., 2012). Although the specific molecular 
structures responsible for specific fluorescence components can’t be 
identified this way, this approach has been used many times to indicate 
the relative proportions of carbon, hydrogen and oxygen in the ionizable 
molecular formulas that covary with PARAFAC components. In two 
prior studies that both identified components similar to Hii and Hiii and 
mapped post-hoc correlations in van Krevlan space, each was associated 
with a broad range of molecular formulae properties with no apparent 
differences between the two (Kellerman et al., 2015; Wünsch et al., 
2018a). However, Wünsch and colleagues also tested a different 
approach whereby the fluorescence and mass spectrometry datasets 
were simultaneously decomposed using a coupled tensor factorization 
model. In that analysis, Hii and Hiii mapped in distinct regions of van 
Krevlen space, with Hiii (H/C=1.2-1.4, O/C=0.5-0.6) more saturated 
and less aromatic than Hii (H/C=0.9-1.3, O/C>0.6), which is consistent 
with the interpretation of PARIX in this study. The same analysis indi
cated that Hi encompassed nearly the full range of molecular formulae 
correlated with Hiii, as well as additional formulae of more aliphatic 
character. This is consistent with FIX and PARIX each representing the 
ratio between a condensed, aromatic humic fraction compared to a 
relatively aliphatic humic fraction. Thus, for FIX the aliphatic fraction is 

Hi while for PARIX, the aliphatic fraction is Hiii. 

3.7. Applications in water treatment 

Fluorescence ratios will be useful for monitoring DOC removal in 
water treatment so long as they sensitively track small changes in water 
quality. This study builds upon earlier studies indicating that a large 
number of treatment options cause measurable changes in fluorescence 
ratios (e.g. Fig. 3), by demonstrating that some changes are predictable 
in size and direction across diverse surface waters. Biological filters are a 
widely-used treatment option that was not tested in this study, but 
earlier studies offer insights that can be used as the basis of predictions. 
Biodegradation predominantly removes hydrophilic DOM so is gener
ally associated with an increase in SUVA consistent with the relative 
enrichment of aliphatic carbon fractions (Hansen et al., 2016; Moran 
et al., 2000). A recent study showed that biodegradation efficiently 
removed Hiv and Pii but not Hi, Hii or Hiii (Moona et al., 2021). This 
explains why FIX for surface water samples is relatively unchanged by 
biodegradation (Fellman et al., 2008; Hansen et al., 2016) and suggests 
that the same will be true of PARIX. 

PARIX and SUVA appear to have rather similar capacities for pre
dicting drinking water treatability, but PARIX has the advantage of 
being measurable on a single, affordable instrument with high precision, 
which is especially useful when DOC concentrations are low and difficult 
to accurately quantify. As with all optical indices, there will be limits to 
usefulness of PARIX for tracking changes in water composition or pre
dicting reactivity and treatability (Hansen et al., 2016; Helms et al., 
2008; Korak et al., 2014; Korak et al., 2015; Weishaar et al., 2003). 
PARIX is likely to overestimate SUVA and susceptibility to coagulation 
in samples with relatively low aromaticity if this was caused by the 
production of small DOM fractions that fluoresce at wavelengths shorter 
than 400 nm or not at all, and that were produced more efficiently than 
Hiii. Conversely, PARIX will underestimate SUVA in samples with rela
tively high aromaticity if this was due to the efficient removal of LMW 
fractions not covarying with Hiii. Ratios involving Hiv or protein-like 
components are likely to be better predictors of bioavailable DOC than 
PARIX (Fellman et al., 2008; Moona et al., 2021). 

Despite apparently widespread relevance for predicting the compo
sition of surface waters at varying stages of treatment, PARIX has not 
been tested for other sample types, e.g. groundwater, wastewater, and 
seawater. In iron-rich lakes, light absorption by iron causes over- 
estimated SUVA values but would likely have the opposite effect on 
PARIX due to greater quenching of long-wavelength fluorescence 
(Poulin et al., 2014), while in wastewaters, dyes and other fluorescent 

Fig. 6. Fluorescence ratios compared to LC-OCD composition in the global dataset. Red lines indicate robust regression models. Note that samples from China (light 
blue) were measured using a different LC-OCD analyzer compared to all other samples. 
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contaminants often are present (Carstea, 2012; Cohen et al., 2014; 
Goffin et al., 2018), some of which (like Wii) may interfere with the 
measurement of Hii or Hiii. Future work should determine the utility of 
PARIX and other PARAFAC ratios for tracking physical and biogeo
chemical processes across the land/sea continuum and in different types 
of engineered environment. 

4. Conclusions 

This study found that PARAFAC fractions with specific spectral and 
chemical properties are ubiquitous in surface waters and tend to behave 
predictably during drinking water treatment. A new fluorescence proxy 
“PARIX” was proposed that tracks the ratio of condensed aromatic 
humic acids containing abundant carboxyl and phenolate groups (Hii) to 
aquagenic refractory organic matter (Hiii) including weathered and de- 
aggregated polyphenolics and polyaromatic acids with relatively high 
nitrogen content. In addition to predicting SUVA, PARIX is correlated to 
indices used to predict DOM freshness and extent of humification. 

More data are also needed to confirm the treatability results in this 
study and determine whether PARIX and other ratios (especially Pi/Hii 
and Pii/Hiii) are consistent predictors of DOC removal in treatments 
similar to those examined in this study, and how they relate to other 
types of treatments that were not studied. 

Indirectly, this study provides further support for the PARAFAC 
approach to interpreting steady state DOM fluorescence, which relies 
upon the assumption that different DOM fractions produce linearly ad
ditive fluorescence signals as a consequence of mathematical and 
chemical independence (Bro, 1997; McKay, 2020). 

Synopsis 

Fluorescence composition predicts SUVA and DOC removal during 
drinking water treatment. 
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