54 research outputs found

    Trapped particle absorption by the Ring of Jupiter

    Get PDF
    The interaction of trapped radiation with the ring of Jupiter is investigated. Because it is an identical problem, the rings of Saturn and Uranus are also examined. Data from the Pioneer II encounter, deductions for some of the properties of the rings of Jupiter and Saturn. Over a dozen Jupiter magnetic field models are available in a program that integrates the adiabatic invariants to compute B and L. This program is to label our UCSD Pioneer II encounter data with the most satisfactory of these models. The expected effects of absorbing material on the trapped radiation are studied to obtain the loss rate as a function of ring properties. Analysis of the particle diffusion problem rounds out the theoretical end of the ring absorption problem. Other projects include identification of decay products for energetic particle albedo off the rings and moons of Saturn and a search for flux transfer events at the Jovian magnetopause

    A Computer Routine for Relay I Trapped Proton Distributions

    Get PDF
    Fortran routine for Relay I trapped proton distribution measurement

    Large scale solar modulation of 500 MeV/N galactic cosmic rays seen from 1-30 AU

    Get PDF
    Using measurements of cosmic rays obtained by Cerenkov counters on Pioneer 10 and Pioneer 11 and neutron monitor data from Earth, the spatial and temperal development of cosmic ray modulation during the last solar maximum were observed. The large-scale features of modulation and recovery are similar at these three sites and thus appear rotationally symmetric near the ecliptic plane. Outward propagating features characterize the radial dependence. The decline of the old cosmic ray cycle is marked by steplike decreases that propagate outward at nearly the solar wind velocity. During the start of the new cosmic ray cycle, recovery occurs first in the inner heliosphere and, after a lag comparable with that of the declining phase, appears later farther out. However, the direction of diffusive propagation is still inward, because the gradient remains positive. Forbush decreases are common at all three sites, and are evidently of great importance in understanding modulation. The largest decrease occurred during a short series of events in the summer of 1982 and had half the amplitude of the eleven year cycle

    Time and energy dependence of the cosmic ray gradient in the outer heliosphere

    Get PDF
    Pioneers 10 and 11, now 35 and 18 AU from the Sun, continue to extend our knowledge of the spatial dependence of cosmic ray intensities in the heliosphere. Radial gradients measured from these spacecraft by UCSD detectors which have integral energy responses above thresholds of 80 and 500 MeV/nucleon are reported. An average gradient of 2%/AU typifies the data set as a whole, but there are time and energy dependences that deviate from this value. With operating lifetimes of 13 and 12 years, respectively, for the two spacecraft, the time dependence was followed for over a solar cycle. The higher energy channel shows less modulation on all time scales. At the start of the present cycle, the gradient is lower than the average value during the last solar cycle

    Trapped particle absorption by the ring of Jupiter

    Get PDF
    The ring systems of Jupiter and Saturn, and their interaction with the magnetosphere were studied. Opportunities to improve the understanding of the sweeping effect of orbiting material on trapped radiation, and the use of this process to gain insight on both the trapped radiation and the target material are outlined. Within the cosmogony of Hannes Alfven, this mechanism is also the key to understanding the formation of many of the features of the Saturnian rings. A better understanding of the sweeping effect would also help to clarify this process

    Pioneer 10/11 data analysis of the trapped radiation experiment

    Get PDF
    The data handling operations and the database produced by the Trapped Radiation Experiment on the NASA Pioneer 10 and 11 spacecraft are outlined. In situ measurements of trapped radiation at both Jupiter and Saturn, the extension of cosmic ray observations to the outer heliosphere, the presence of Jovian electrons in interplanetary space, analyses of the interaction between planetary satellites and the trapped radiation that engulfs them, and further investigations of the radiation enviroments of both planets are reported

    Penetration of solar protons to four earth radii in the equatorial plane

    Get PDF
    Explorer 26 observations of solar protons at altitudes of four earth radii inside magnetosphere near geomagnetic equato

    A simulation study of two major events in the heliosphere during the present sunspot cycle

    Get PDF
    The two major disturbances in the heliosphere during the present sunspot cycle, the event of June to August, 1982, and the event of April to June, 1978, are simulated by the method developed by Hakamada and Akasofu (1982). Specifically, an attempt was made to simulate the effects of six major flares from three active regions in June and July, 1982, and April and May, 1978. A comparison of the results with the solar wind observations at Pioneer 12 (approximately 0.8 au), ISEE-3 (approximately 1 au), Pioneer 11 (approximately 7 to 13 au) and Pioneer 10 (approximately 16 to 28 au) suggests that some major flares occurred behind the disk of the sun during the two periods. The method provides qualitatively some information as to how such a series of intense solar flares can greatly disturb both the inner and outer heliospheres. A long lasting effect on cosmic rays is discussed in conjunction with the disturbed heliosphere

    Gradients and anisotropies of high energy cosmic rays in the outer heliosphere

    Get PDF
    Previous studies at lower energies have shown that the cosmic ray density gradients vary in space and time, and many authors currently are suggesting that the radial gradient associated with solar cycle modulation is supported largely by narrow barriers which encircle the Sun and propagate outward with the solar wind. If so, the anisotropy is a desirable way to detect spatial gradients, because it can be associated with the local solar wind and magnetic field conditions. With this in mind, the anisotropy measurements made by the UCSD Cerenkov detectors on Pioneers 10 and 11 are studied. It is shown that the local anisotropy varies greatly, but that the long term average is consistent with the global radial gradient measured between two spacecraft over a baseline of many AU

    Gradients and anisotropies of high energy cosmic rays in the outer heliosphere

    Get PDF
    Two cosmic rays which pass through the same point going in opposite directions will, in the absence of scattering and inhomogeneities in the magnetic field, trace helices about adjacent flux tubes, whose centerlines are separated by one gyrodiameter. A directional anisotropy at the point suggests a difference in the number of cosmic rays loading the two flux tubes; that is, a density gradient over the baseline of a gyrodiameter. Previous studies at lower energies have shown that the cosmic ray density gradients vary in time and space. It is suggested that the radial gradient associated with solar cycle modulation is supported largely by narrow barriers which encircle the sun and propagate outward with the solar wind. If so, the anisotropy is a desirable way to detect spatial gradients, because it can be associated with the local solar wind and magnetic field conditions. Anisotropic measurements made by Cerenkov detectors on Pioneers 10 and 11 were studied. It was found that local anisotropy varies greatly, but that the long term average is consistent with the global radial gradient measured between two spacecraft over a baseline of many AU
    • …
    corecore