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ABSTRACT 

On February 5, 1965, March 24, 1966, J u l y  7, 1966, August 28, 1966, 

and September 2, 1966, so la r  protons i n  the 40 t o  several  hundred MeV 

range were monitored by s a t e l l i t e  Explorer 26 a t  low L values inside 

the boundary of trapped radiation near the geomagnetic equator. The ar- 

r i v a l  of pa r t i c l e s  was prompt whenever the s a t e l l i t e  w a s  i n  a posit ion t o  

see them. The arrival of the February 5 protons occurred 60 f 1 2  minutes 

a f t e r  the f l a r e  w a s  observed; the March 24, 1966 protons arr ived 38 f 3 

minutes a f t e r  the f l a r e ;  and the August 28, 1966 protons 66 f 5 minutes 

a f t e r  the f l a r e .  The March event w a s  seen simultaneously by Vela 2A and 

2 B ,  and by 020-1 outside the magnetosphere. The arrival, in tens i ty ,  and 

time p ro f i l e s  a t  the d i f f e ren t  spacecraft a r e  comparable. Following the 

event of September 2,  1966, so la r  protons between 40 and 250 MeV were pres- 

ent for several  days. a t  1540 UT 

and the decay time constant of about 8 213 hours correspond closely with 

simultaneous measurements made by s a t e l l i t e s  1963-38c and 1966-7OA 

-2 -1 sec The peak f lux  of 4500 f 500 cm 

Presented a t  the IAGA Commission V,  Solar-Terrestrial  and Cosmic Terres- 
t r i a l  Relationship Conference, St .  Gall, Switzerland, September 1967. 
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above t h e  po la r  caps.  The s p a t i a l  d i s t r i b u t i o n  w a s  character ized by 

a plateau of constant i n t e n s i t y  equal t o  t h a t  seen over t h e  po la r  caps,  

bordered by a region of east-west asymmetry below the  p a r t i c l e  c u t o f f s  

f o r  some d i r e c t i o n s  of a r r iva l ,  terminated by the  f i n a l  c u t o f f s  f o r  

eastbound p a r t i c l e s .  The c u t o f f s  are below t h e i r  c l a s s i c a l  StGrmer 

values,  bu t  t hey  a r e  described by a modified Starmer 

theory.  The cu to f f  a l t i t u d e s  a r e  lowered during the  magnetic storm, 

and our l imi t ed  sample c o r r e l a t e s  b e t t e r  with K 

be shown t h a t  a symmetrical r i n g  cu r ren t  i s  expected t o  r a i s e  the  

equa to r i a l  c u t o f f s ,  so  t h a t  some o the r  mechanism is  needed t o  account f o r  t h e  

storm e f f e c t .  The geomagnetic t a i l  may account f o r  t h i s  mechanism. The 

p a r t i c l e s  seen i n  these  events show no evidence f o r  merging with the  

trapped r ad ia t ion  and becoming permanently trapped. 

than with Dst .  It can 
P 

2 



I. INTRODUCTION 

Most observations of s o l a r  f la re  produced protons have been r e -  

s t r i c t e d  t o  high l a t i t u d e s  near t h e  e a r t h ' s  su r f ace  o r  t o  i n t e r p l a n e t a r y  

space outs ide the magnetosphere. Ground s t a t i o n s ,  bal loons,  and l o w  

a l t i t u d e  po la r  o r b i t i n g  s a t e l l i t e s  have been used t o  i n v e s t i g a t e  a 

wide v a r i e t y  of e f f e c t s  concerning the  e n t r y  and motion of those p a r t i c l e s  

i n  the  t e r r e s t r i a l  f i e l d ,  t h e i r  time dependence, t h e  pos i t i on  of t h e i r  

l a t i t u d e  c u t o f f s ,  and the  p o s s i b i l i t y  ol' permanent t rapping.  I n  t h i s  

paper w e  r e p o r t  > 40 Mei s o l a r  protons observed by s a t e l l i t e  Explorer 26 

a t  a l t i t u d e s  of 3-5 e a r t h  r a d i i  i n s ide  the  magnetosphere near t he  geo- 

magnetic: equator.  Events i n  whch solar protons were monitored are those 

of February 5 ,  1965, March 24, 1966, ,July '7, 1906, August, 28. 1966, and 

September 2 ,  1966. 

The a r r i v a l  of s o l a r  protons over t h e  po la r  caps has been well r e -  

corded t n  the ground by a b s o r p t i m  and o t h e r  r a d i o  techniques,  with onset  

times t y p i c a l l y  do-wn t o  an hour a f t e r  a f l a r e  (Reid and Leinbach, 1959; 

Bailey, 1964). 

and high i n c l i n a t i m  and high e c c e n t r i c i t y  s a t e l l i t e s  r e v e a l s  time l a g s  

of s eve ra l  hours t o  two days f o r  < 10 MeV p a r t i c l e s ,  (P ieper ,  Zmuda, 

Bostrom, and O'Brien, 1962; Bryant, C l ine ,  Dessai,and McDonald, 1962) 

an hour for > 30 MeV p a r t i c l e s  ( V a n  Allen and Lin ,  1960) and l e s s  than 

a ha l f  hour f o r  - 170 MeV protons (Arnoldy, Hoffman, Peterson, and 

Winckler, 1959). 

presented i n  Sect ion I I I o f  t h i s  paper. 

Direct  de t ec t ion  of the  ion iz ing  p a r t i c l e s  by bal loons 

The arrivals a t  high a l t i t u d e s  near t h e  equator a r e  

3 



For most events t h e  t i m e  dependence can be i n t e r p r e t e d  i n  terms 

of d i f fus ion  i n  i n t e r p l a n e t a r y  space, under the  assumption t h a t  a l l  

p a r t i c l e s  are produced instantaneously by a s o l a r  f.Mre. 1ntensit.y- 

time profiles obtained by Explorer 26 w i l l  be discussed i n  Section 5. 

A cons i s t en t  f e a t u r e  of pol-ar cap absorpt ion events i s  the  u n i -  

formity of' i on iza t ion  across  t h e  p o l a r  cap and down to  some cu to f f  l a t i -  

tude. This unifc.rmity i s  seen by high-inclinat,icln sa t ,e l l i t , es  where i t  

appears as  a plateau of uniform par i ic* le  t'lux when the  s a t e l l i t e  passes 

above the  cutoPf l a t i t u d e  f o r  the threshold energy of a p a r t i c u l a r  

de te r t l l r  ~ L i n  and Van A l l  ! L ?  1964; l i e p e r ,  e t  a l  1'362). Direc t iona l  

i s o t r c p g  a l s o  p r e v a i l s  over the iipper hemispliert (Cgi lvie  ? Bryant, 

and Davis, 1962; Pieper ,  e t  a l ,  1962;). 

report.ed i n  which t h e  low energy I <  22 MeV) protons a t  high l a t i t u d e s  

near the  dayside cu to f f  had a peak i n  t h e i r  angular d i s t r i b u t i o n  per-  

pendicular Lo t he  l o c a l  B vector  (Paul ikas ,  Blake, and Freden, 1968). 

These p a r t i c l e s  were taken t o  be quasi-trapped: mirroring between 

hemispheres and d r i f t i n g  t o  longitudes away from the  i n j e c t i o n  po in t .  

A depar tLl r r  Yrom i sc t ropy  i s  

During t h e  same event Paulikas e t  a1 r e p o r t  t h a t  the  Lzundary between 

l o w  energy s o l a r  protons (1.1 - 1.6 MeV) and t h e i r  trapped counterpar ts  

became ind i s t ingu i shab le .  The e q u a t o r i a l  angular d i s t r i b u t i o n  and cut-  

off p r o f i l e s  obtained by Explorer 26 during t h i s  event a r e  presented 

i n  sec t ion  I V .  A method i s  shown t o  f i t  t hese  da t a  with a modified 

StGrmer theory,  and the  d i s t i n c t i o n  between trapped and non-trapped 

p a r t i c l e s  i s  inves t iga t ed .  



For s o l a r  protons,  as we l l  as f o r  g a l a c t i c  cosmic r ays ,  t h e  c u t o f f  

la t i tudes a r e  lower than t h e i r  t h e o r e t i c a l  StGrmer values,  and the cause 

i s  sought i n  e x t e r n a l  cu r ren t  systems. Both t h e  r i n g  cu r ren t  and t h e  

magnetwpheric boundary c u r r e n t s  when a c t i n g  alone have been found i n -  

adequate. (Akasofu, Lin ,  and Van Allen,  1963) Models and c a l c u l a t i o n s  

emphasizing t h e  'combined ef fec t ,  of boundary and r i n g  c u r r e n t s  .(Akasofu, 

e t  a l ,  19631, turbulence (Ray, 1964), and the  geomagnetic t a i l  (Reid 

and Sauer, 1967; G a l l ,  Jimenez and Camacho, l96'r) a r e  s t i l l  proposed. 

In  sect ion VT of t h i s  paper t h e  el't'ec:l. 01' a storm on e q u a t o r i a l  c u t o f f s  

is presented, and it i s  demcnstrat,cd that  th i s  i s  inconsistent,  with the  

e f f e c t  produced by symmetrical r i n g  and/or boundary c u r r e n t s .  
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11. INSTWMEX~TATIQN 

Explorer 26 is  i n  a high-eccentricity, low-inclination o r b i t  

designed t o  monitor the  trapped radiation, with apogee a t  5 ea r th  r a d i i ,  

perigee a t  .047 ea r th  radii ,  and inclination 20’. Launched i n  December 

1964 and i n i t i a l l y  spin s tab i l ized ,  the s a t e l l i t e  desp’w t o  about 2 rpm 

i n  fa l l ,  1966, the l a t e s t  period reported here. 

appeared regular between perigees, the spin vector i s  unknown t o  u s  

and there are indications tha t  atmospheric perturbations a t  perigee 

changed it from o r b i t  t o  o rb i t .  

Although the spin 

There a re  two University of California,  San Diego (UCSD) detectors 

aboard, named A and D ,  each with a low and a high discrimination l eve l ,  

Al, A 2 ,  and D1, 02. The counts from these discriminators a re  fed 

through four-stage ungated prescalers and subcommutated onto a single 

encoder channel. This channel has an accumulation time of 9.2 sec. and 

a readout period of 17 sec., cycling through a l l  four discriminators i n  

68 seconds. 

about a minute,and the recording of n events by the encoder i n  one accumcla- 

t ion  in t e rva l  indicates an average counting r a t e  of 1.75 n = 16/9.2 n.  

much of the data considered i n  t h i s  paper the counting r a t e  was below 

the quantization l eve l  of 1.75 c/s ,  with the r e s u l t  that the telemetry 

Thus the minimum resolving time f o r  each discriminator i s  

For 

record consists of zeros interspersed with single events. I n  order t o  

extend the counting r a t e  scale dovnward from 1.75 these counting r a t e s  

have been averaged between consecutive events, so t h a t  an in t e rva l  of 

n readings between single counts has an average counting r a t e  of 1.75h-1. 

The data i n  the f igures  which a re  plot ted as stepped bar graphs have 

been t r ea t ed  i n  t h i s  manner. 
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We dea l  mainly w i t h  detcctmr A d i scr imina tor  2 s ince  i t  i s  able 

t o  make unambiguous i d e n t i f i c a t  iLri of  solar p a r t i c l e s .  This omni- 

d i r e c t i o n a l  de t ec to r  c o n s i s t s  of a sphe r i ca l  b a l l  of p l a s t i c  s c i n t i l l a -  

t o r  0.4 em i n  diameter centered in s ide  a hemispherical dome and con- 

nected by a l i g h t  pipe t o  a photomult ipl ier  tube.  The aluminum dome 

2 has a uniform thickness  of 1.8 gm/cm 

Pulse height  d i scr imina tor  A 1  a t  0.72 MeV i s  ab le  t o  count s ing le  

protons,  s ing le  e lec t rons ,  and p i leup  e lec t rons .  Discriminztor A2 a t  

2.6 MeV counts s ing le  protons only. The c ross -sec t ion  f o r  counting 

mono-energetic protons with each of these discr iminators  i s  shown i n  

Figure 1. Shielding over the back 2n s t e rad ians  has been taken i n t o  

account i n  computing the cross-sect ion for high energy p a r t i c l e s .  For 

a power l a w  spectrum of the  form J ( E ) d E  = KE-n dE  d i scr imina tor  A2 i s  

approximated wel l  by a rectangular  passband between 40 and 110 MeV. 

The r e s u l t  of i n t eg ra t ing  these  cross-sect ions over the  above power law 

spectrum i s  p l o t t e d  i n  Figure 2 as the e f f e c t i v e  geometric f a c t o r  for  

computing J ( A 0 ) .  

which bars protons < 39. MeV. 

With Figures 1 and 2 one can convert  t he  counting 

r a t e s  given i n  t h i s  paper d i r e c t l y  i n t o  f l u x  f o r  d e l t a  funct ion and 

power l a w  energy spec t ra .  Other s p e c t r a l  forms requi re  in t eg ra t ion  

over t h e  cross-sect ions given i n  Figure 1. 

The o ther  UCSD de tec to r  on Explorer 26 i s  a d i r e c t i o n a l l o w  energy 

p a r t i c l e  counter,  de t ec to r  D. A c y l i n d r i c a l  .25 x .25 em p l a s t i c  

s c in t i l . l a to r  i s  coupled t o  a phototube and covered by a platinum cap 

containing an entrance hole 0.13 em i n  diameter.  An aper ture  of ha l f  

angle 8 0 def ines  the  acceptance cone and gives  the  de t ec to r  a d i re ,  t i onal  

7 



-4 2 2 geometric f a c t o r  of 8.38 x 10 cm s t e r .  An aluminum f o i l  of 48 mg/cm 

th ickness  and the  d iscr imina t ion  l e v e l s ,  D1 a t  .28 MeV and D2 at  .66 MeV, 

determine the  p a r t i c l e  types counted. D1 responds t o  e l ec t rons  > .5 MeV 

and protons > 5 MeV, and D 2  counts protons > 5 MeV and e l ec t rons  wi th  

low e f f i c i ency .  A s  an omnidirect ional  counter  of pene t r a t ing  r a d i a t i o n ,  

2 de tec to r  D has a c ross -sec t ion  of about .055 ern with sh i e ld ing  which 

averages more than 4.5 grn em -2 . 
For more p a r t i c u l a r s  the reader  i s  r e f e r r e d  t o  McIlwain's (1966) 

desc r ip t ion  of an i d e n t i c a l  s e t  of^ counters  on E..:plorer 15. 
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111. ARRIVAL FROM THE SUH 

Explorer 26 w a s  ab le  t o  monitor t he  a r r i v a l  of s o l a r  protons during 

the  events  of February 5 ,  1965, March 24, 1966, and August 28, 1966. 

Figure 3 shows the  March 24, 1966 event.  The d iscr imina tor  A2 counting 

r a t e s ,  p l o t t e d  a s  c ros ses ,  have been smoothed by averaging over i n t e r v a l s  

of va r i ab le  length  chosen t o  obta in  good s t a t i s t i c s  without s p o i l i n g  time 

r e so lu t ion .  The protons a r e  a t t r i b u t e d  t o  an importance 3 f l a r e ,  which 

s t a r t e d  a t  0225 UT and reached maximum br ightness  a t  0240. The protons 

were f i r s t  detected by Explorer 26 a t  0303 f 0003 UT and the  counting 

r a t e  peaked a t  0325. Their  pathlength i n  reaching the  e a r t h  can be 

gauged from t h e i r  propagation time and an est imate  of t h e i r  energy. The 

r a t i o  of  A 1  t o  A 2  counting r a t e s  a t  the  peak i s  1.6 : 1, which p laces  the  

energy a t  85 MeV i f  the  p a r t i c l e s  a r e  monoenergetic and s e t s  an upper 

l i m i t  of 85 MeV on t h e  average energy of any d i s t r i b u t e d  spectrum. 

accurac ies  i n  our knowledge of the  de t ec to r  gain and/or t he  c ross -sec t ions  

i n  Figure 1 could cause an e r r o r  of *lo% i n  t h i s  number. 

l apse  from the  start  of the  f l a r e  t o  the  peak allows an in t e rp l ane ta ry  

pathlength of only 3.3 AU. 

I n -  

Then t h e  time 

Addit ional  da t a  on t h i s  event ,  obtained outs ide  the  magnetosphere 

by E O - I ,  have been published by Kahler, Primbsch, and Anderson (1967). 

Their  de t ec to r ,  which has a l a r g e  geometric f a c t o r  and high energy reso-  

l u t i o n ,  w a s  unfor tuna te ly  hampered by an ant icoincidence f a i l u r e  which 

makes the  geometric f a c t o r  ~mknown. However, when t h e i r  published 

da ta  a r e  ad jus ted  t o  an equivalent  energy range (channels 7 through 17 

or roughly 40 - 140 MeV), an assumed omnidirect ional  geometric f a c t o r  
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of 1 .5  em2 br ings t h e i r  f l uxes  within 5% of those measured by Explorer 

26 during t h e  a r r iva l ,  peak, and decay phases of t h e  event.  

geometric f a c t o r  i s  compatible with t h e i r  i n - f l i g h t  c a l i b r a t i o n  of 

A s  t h i s  

t he  OGO d e t e c t o r  based on riometer absorption d a t a ,  we conclude t h a t  

the GO-I and Explorer 26 i n t e n s i t i e s  and onset t i m e s  are i n  agreement. 

The Vela d a t a  shown i n  Figure 3 were generously given to  u s  by 

D r .  John Gosling of t h e  Los Alarnos S c i e n t i f i c  Laboratory. The counting 

r a t e s  f o r  Explorer 26 have been scaled by t h e  r a t i o  of geometric f a c t o r s  

a t  85 MeV. 

proton counters ,  t h e i r  responses a r e  s t r i k i n g l y  similar t o  Explorer 26. 

Simultaneity among a l l  counters can be conservat ively s t a t e d  as b e t t e r  

than 5 minutes, and the  i n t e n s i t i e s  seem t o  be as close as  our knowledge 

of t h e  geometric f a c t o r s  permits.  

Although the  Vela de t ec to r s  were no t  designed p r imar i ly  as 

It i s  t o  be remembered t h a t  t h e  Vela s a t e l l i t e s  a r e  a t  17 R , e 

020-1 w a s  wel l  outs ide the  magnctophere, but  Explorer 26 w a s  i n s ide  

on closed l i n e s  of fo rce .  

the  peak f l u x  of s o l a r  p a r t i c l e s ,  the  acceptance cone computed by 

c l a s s i c a l  St8rmer theory f o r  85 MeV protons w a s  only 1/10 of a sphere.  

Since L i o u v i l l e ' s  theorem disallows focusing, t h e  de t ec to r  should have 

been expected t o  see  no more than one-tenth of the  i n t e r p l a n e t a r y  

A t  the  pos i t i on  where Explorer 26 observed 

f lux .  The problem of geomagnetic c u t o f f s  w i l l  be discussed i n  a l a t e r  

sec t ion  of t h i s  paper, b u t  i7; i s  evident t h a t  the  p a r t i c l e s  a r r i v i n g  

from the  sun a r e  penetrat ing deep i n t o  the  geomagnetic f i e l d ,  deeper 

than t h e i r  StErmer c u t o f f s  would allow. 

10 



The arrival of so l a r  protons on February 5 i s  shown i n  Figure 4. 

Because of the low f lux  and the uncertainty i n  identifying ga lac t i c  

cosmic-ray background, the  onset cannot be f ixed precisely,  but our 

best  judgment i s  1850 f 0012 UT. The f l a r e  where the p a r t i c l e s  orig- 

inated w a s  seen from 1750 UT t o  2024 with m a x i m  brightness a t  1810. 

On Mariner I V ,  i n  l i n e  with the ea r th  1.14 AU from the sun, three 

geiger tubes with a threshold of 55 MeV fo r  omnidirectional protons 

recorded the onset of so la r  pa r t i c l e s  a t  1835 f10 minutes (Krimigis 

and Van Allen, 1967). 

marginal agreement, but the discrepancy may be explainable. 

w a s  i n  such an o r b i t a l  phase tha t  it did not reach a very high L value, 

and the grea tes t  i n t ens i ty  it measured f e l l  short  of t ha t  i n  in t e r -  

planetary space. Thus it i s  probable tha t  the  geomagnetic cutoff 

affected i t s  p ro f i l e  of the event, and may have contributed t o  the 

problematical e a r l i e r  onset a t  Mariner. 

The reported a r r i v a l  times a r e  within only 

Explorer 26 

During the so la r  proton event of J u l y  7, 1966; Explorer 26 was 

i n  an unfavorable o r b i t  so  t h a t  neither the a r r i v a l  nor the in t e r -  

planetary in t ens i ty  w a s  monitored. Protons were counted, but the 

detector d id  not reach an L value above 5.2 and there i s  evidence 

t h a t  t h i s  w a s  not above the  41-r cutoff.  

i t a t i v e  statement that  protons did a r r ive  a t  the ear th ,  but we w i l l  

present no quant i ta t ive  observations. 

Thus we can make the qual- 
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The s o l a r  proton event  of August 28, 1966 was i n i t i a t e d  by an 

0 
importance 3 f l a r e  t h a t  occurred a t  s o l a r  coordinates  21  

The f l a r e  s t a r t e d  a t  1523 UT and reached m a x i m  a t  1530. 

p a r t i c l e s  a r r ived  a t  Explorer 26, as seen i n  Figure 5. 

r a t i o  soon a f t e r  t h e  a r r i v a l  s e t s  a l i m i t  of 95 MeV t o  the  average 

energy i n  channelA2,  the  pathlength o f  these  p a r t i c l e s  i s  no more 

than 3.8 AU. 

average counting r a t e  agreed t o l e r a b l y  with a predic ted  counting r a t e  

based on 1963 - 38C data (Bostrom, 1967) taken over t he  poi.zr caps.  

( A s  it w a s  necessary t o  ex t r apo la t e  the  1963-38~ spectrum from 25 t o  

40 MeV, t h i s  to le rance  i s  loose ,  and estimated a t  a f a c t o r  of two.) 

N and 4' E. 

A t  1629 

A s  t he  A1/A2 

During f i v e  apogees when L w a s  g r e a t e r  than 5.5 t he  

Therefore i t  i s  concluded t h a t  the  geomagnetic c u t o f f s  d id  not  i n t e r -  

f e r e  with the  measured a r r i v a l  time and t h a t  t he  undiminished i n t e r -  

p lane tary  f l u x  w a s  sampled seve ra l  t imes af terwards.  

The last event t o  be considered i n  t h i s  paper i s  t h a t  of 

September 2 ,  1966. 

Figure 6. 

The f i r s t  de t ec t ion .o f  s o l a r  protons i s  shown i n  

The p a r t i c l e s  a r r ived  a t  t h e  e a r t h  while Explorer 26 was 

ins ide  the  trapped r ad ia t ion  zone, but  as Explorer moved out of the  

zone and approached apogee, the  s o l a r  proton f l u x  was s t i l l  r i s i n g .  

A t  the  beginning of the  pass it i s  d i f f i c u l t  t o  d i s t i n g u i s h  between 

the  time dependence of t he  s o l a r  protons and t h e  s p a t i a l  dependence of 

the  geomagnetic cu to f f s .  Measurements l a t e r  i n  the  event provide 

many samplings of the  in t e rp l ane ta ry  i n t e n s i t y ,  the  geomagnetic c u t o f f s ,  

and the  f l u x  of s o l a r  p a r t i c l e s  which a r e  i n  the  geomagnetic f i e l d  

but no t  trapped, 

t o  these  measurements. 

The following sec t ion  of t h i s  paper w i l l  be devoted 
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For a concise l i s t  of da t a  on these  f l a r e s  and the  a r r i v a l  of 

t he  s o l a r  p a r t i c l e s  a t  t h e  e a r t h  t h e  reader  may r e f e r  t o  Table I. A s  

the  preceding discussion of these events has shown, s o l a r  p a r t i c l e s  

a r r ived  promptly e5 Explorer 26 i f  t he  s a t e l l i t e  w a s  i n  a favorable  

pos i t ion .  

i n t e rp l ane ta ry  i n t e n s i t y  pear  apogee, and even obtained use fu l  time 

p r o f i l e s  of t he  s o l a r  p a r t i c l e  f lux .  

During most events Explorer 26 sampled t h e  zndiminished 
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I V .  TJ3E MOTION OF SOLAR PROTCBTS I N  THE MAGNETOSPHERE 

The So la r  Proton Cutoffs 

The September 1966 event w a s  s u f f i c i e n t l y  in t ense  f o r  Explorer 26 

t o  make meaningful observations of the  s o l a r  protons deep wi th in  the  mag- 

netosphere. A s  expected, east-west asymmetry w a s  exh ib i t ed  a t  t h e  lowest 

a l t i t u d e s  because of t he  s t rong  dens i ty  gradient  of guiding c e n t e r s  where 

t h e  s o l a r  p a r t i c l e s  ceased t o  pene t r a t e .  Here t h e  cu to f f  i s  a funct ion 

of de t ec to r  look d i r e c t i o n ,  with allowed and forbidden cones f o r  t he  ar- 

r i v a l  of p a r t i c l e s  with any given energy. These cutol'fs were w e l l  below 

t h e i r  pos i t i ons  ca l cu la t ed  according t o  Stgrmer f o r  an i n f i n i t e  d ipo le  

f i e l d .  However, Starmer 's  theory i s  s t i l l  u s e f u l  t o  descr ibe the  char-  

a c t e r i s t i c s  of t h e i r  motion, and a modified StErmer theory gives  a 

remarkably good f i t  t o  t h e  da ta .  

Ray (1963j der ives  the  following f O r m U l a  f o r  a p a r t i c l e ' s  d i r e c t i o n  

angle i n  an a x i a l l y  symmetric region of  a magnetic f i e l d :  

- A  
2 

cosul = 
(P 

The va r i ab le s  a r e  def ined as follows: 

& i s  t h e  angle between the  p a r t i c l e ' s  v e l o c i t y  and west. 

r ,  8 ,  cp a r e  t h e  rad ia l  d i s t ance ,  c o l a t i t u d e ,  and longi tude.  

A i s  the  a z i n u t h a l  component of t he  magnetic vector  p o t e n t i a l .  

y i s  an i n i t i a l  condi t ion with u n i t s  of length.  For a cosmic r a y  
(P 

i n  a f i e l d  t h a t  vanishes a t  i n f i n i t y ,  2 y i s  the  impact 

parameter of t he  p a r t i c l e ' s  i n i t i a l  t r a j e c t o r y .  

Length i s  expressed i n  energy-dependent Stgrmer u n i t s  given by 
I 

o r  t h e  square r o o t  of t h e  r a t i o  between the  e a r t h ' s  dipole  moment and 

the  p a r t i c l e ' s  r i g i d i t y .  A t  t h e  low L values where t h e  s o l a r  p a r t i c l e s  

coex i s t  with trapped e l e c t r o n s ,  it i s  assured t h a t  t h e  l i n e s  of fo rce  



have a dipole- l ike mirror  geometry and form c losed  s h e l l s  a x i a l l y  about 

t he  ea r th ,  Thus, i n  t h i s  region a d ipole  term i s  a reasonable f i r s t  

approximation t o  Aq, and 

For a given energy p a r t i c l e  a t  a given poin t  i n  space equation 2 de t e r -  

mines the  r e l a t i o n  w ( y )  between t h e  p a r t i c l e ' s  d i r e c t i o n  angle  and the  

in t eg ra t ion  constant  y. If the re  i s  any r e s t r i c t i o n  on the  poss ib le  

values of y, t he re  may be a r e s t r i c t i o n  on the  allowed values of w. For 

instance,  i n  the  c l a s s i c a l  StGrmer problem where the  f i e l d  i s  d ipolar  

out t o  i n f i n i t y ,  there  i s  a maximum value of y for which cosmic r ay  

(unbounded) t r a j e c t o r i e s  can penet ra te  below a ga te  point  one C 

the  o r ig in .  I n  Ray's no ta t ion  t h i s  i s  given by 

from s t  

y s  1 ( 3 )  

The allGwed !alues of w determined by such a l i m i t  on y form a cone 

which has i t s  a x i s  on the  east-west vector .  A s  t h e  observation poin t  

moves inward, t he  allowed cone shr inks  from a f u l l  sphere above 
h 

t o  only the  eastbound hemisphere a t  

s in2 0 

ymax 
r =  

C 

and f i n a l l y  t o  the  last, eastbound r a y  a t  

- y max + C s i n 3  e r =  - s i n  8 

( 5 )  
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The additional consideration of earth-shadow cones is clearly unnecessary 

because of the high altitude of the Explorer 26 orbital observations. 

Figure 7 illustrates a roll modulation of the detector counting 

rate caused by this east-west asymmetry during a pass in which the 

satellite remained below r+. 

is unknown, the amplitude and phase of the modulation cannot be tested 

theoretically. However, the spin-averaged counting rate is the true 

omnidirectional rate, and this can be related to the interplanetary 

rate as will be shown later in this section. 

Because the orientation of the spin vector 

Above r+ the interplanetary flux arrives unattenuated. This 

feature appears as an isotropic plateau like those seen in Figures 8 

and'9 which are typical of the Explorer 26 data Srom this event. 

modulation appears in these figures as an  asymmetric domain where the 

intensity changes rapidly at the beginning and end of the plateau. 

These two features, a domain of east-west asymmetry and an isotropic 

platcau, appear on pass after pass during this event until the counting 

The roll 

rate becomes so small that it is impossible to distinguish them. The 

spatial occurrence of these features is represented schematically in 

Figurelowhich shows the satellite trajectory for six passes plotted on 

a topographical flux map of B, L space. Intervals of roll modulation 

are depicted by heavy dashed lines, and the plateau by a solid black 

line. It is evident that the plateau extends outward indefinitely and 

has a flat profile, which is expected of the unattenuated solar flux. 

The plateau edge advances progressively inward from the first to 

the last pass shown. This interval is the buildup period of a geomagnetic 
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storm associated with the proton-emitting flare, and the advance is 

caused by distortion of the magnetosphere. 

proton cutoffs on geomagnetic storm parameters is an interesting topic 

that will be discussed separately in a later section of this paper. 

The dependence of the solar 

There is a time variation in the plateau flux, consisting of an 

exponential decay with a time constant of about 8 2/3 hours, visible 

in Figure 8. The profiles of 13 passes are shown in Figure 11,with 

schematic representation of isotropy and roll. modulation. The same 

decay is seen from apogee to apogee and persists for several days with 

the same time constant. This time dependence is determined by the 

interplanetary propagation of the particles, which is the subject of 

section V of the paper. 

The intensity of the equatorial plateau can be checked against 

the interplanetary flux by comparing measurements made by spacecraft 

inside and outside the magnetosphere. For the March 1966 event such 

a comparison was possible with E O - I  and Vela 2A and 2B, with the re- 

sults shown in Figure 3 and discussed previously in this pa.per. For 

September 1966 data are available from two low altitude, polar orbiting 

spacecraft, 1963-3& and 1966-7OA. (Bostrorn 1967; Paulikas, 

Blake, and Freden, 1968) There is some doubt whether the polar cap 

field lines connect directly to the interplanetary field or form an 

extended tail. However, this matters only for lower energy protons, 

since above 40 MeV the polar plateau is directly accessible from space. 

Data from the two polar orbiting spacecraft were taken in 3 integral 

energy ranges from 2.2 to 25 MeV (1963-38c) and in 8 differential 

ranges from 1.1 to 130 MeV (1966-7OA). To be compared with Explorer 26 

18 



the  measured polar  cap spec t r a  were in t e rpo la t ed  or ext rapola ted  over 

the  energy range of de t ec to r  A2, background co r rec t ions  made 

metr ic  f a c t o r s  ad jus ted ,  assuming i so t ropy ,  t o  obta in  t h e  counting r a t e  

and geo- 

t h a t  would have been obtained by Explorer 26 over the  pole.  These data 

a r e  displayed i n  Figure 11, and it i s  c l e a r  t h a t  not  only the  i n t e n s i t y  

but a l s o  the  time p r o f i l e  of t he  event i s  i n  agreement. 

Now it i s  appropr ia te  t o  make the  observat ion t h a t  i n  the  asymmetric 

domain t h e  f r a c t i o n  of a sphere subtended by t h e  allowed cone determines 

t h e  t r u e  omnidirect ional  r a t e  i n  r e l a t i o n  t o  t h e  in t e rp l ane ta ry  counting 

r a t e .  Because t h e  spin-average counting r a t e  is  t h e  t r u e  omnidirect ional  

r a t e ,  we can wr i te  

fi (Y 1 max - 
C R = J G  P 4 n  (7 )  

where i s  the  spin averaged counting r a t e  

J i s  the  omnidirect ional  i n t e rp l ane ta ry  f l u x  (assumed i s o t r o p i c )  
P 
i n  em see -2 -1 

2 G i s  the  omnidirect ional  geometric f a c t o r  i n  ern 

and 

n ( y )  = 2 T T ( l + c o s w ( y ) )  

Where t h e  f i e l d  i s  a x i a l l y  symmetric (l), (7),  and (8) r e l a t e  t o  

J and, i f  the  dipole  assumption is  good, 
P’ 



This equation r e l a t e s  the  i n t e r p l a n e t a r y  counting r a t e  t o  t h e  

spin-averaged counting r a t e  a t  a given pos i t i on  r, 9. Because it i s  

wr i t t en  i n  Starmer l eng th  units, it a p p l i e s  t o  a s i n g l e  energy. 

eve r ,  as the  StGrmer l eng th  i s  a mild f'unction of energy (C cy 

E -c f o r  n o n - r e l a t i v i s t i c  p a r t i c l e s ) ,  a s ing le  value of c conta ins  

wide l a t i t u d e .  Therefore we w i l l  use  t h e  upper l i m i t  t o  the  average 

energy provided by t h e  A1 : A2 r a t i o  as we d id  i n  sec t ion  111. Through- 

out  the  event t h i s  r a t i o  i s  c lose  t o  3 : 2 ,  which determines an energy 

of 80 MeV and s e t s  Cst  a t  1 2 . 2  e a r t h  r a d i i .  

The other  q u a n t i t i e s  f o r  equation (9 )  can be read f'rom t h e  graphs.  

How- 

st 

s t  
1 

The in t e rp l ane ta ry  f l u x  i s  measured dn the pla teau  of each pass ,  and 

an exponent ia l  term allows f o r  the  time va r i a t ion :  

J = J 0 exp ( - (t - to) /  T ) (10) P 

i s  f ixed ,  f o r  a d ipole  f i e l d ,  by ( 3 ) .  However, as we have a l ready  Y max 

observed, pure Stormer theory does no t  work. Therefore l e t  us t r e a t  

Y max 

be cons i s t en t  with t h e  earthbound convention of measuring v e r t i c a l  

as an empir ical  quan t i ty .  It can be evaluated very e a s i l y .  To 

c u t o f f s ,  we def ine  the  cu to f f  a t  s a t e l l i t e  a l t i t u d e s  as the  l i m i t  f o r  

v e r t i c a l  a r r i v a l  of p a r t i c l e s  of a given r i g i d i t y .  This  i s  where 
- 

ccsw = 0, the  allowed cone equals one hemisphere, and CR fa l l s  t o  one- 

ha l f  i t s  in t e rp l ane ta ry  value.  Equations 5 and 9 give the  cu to f f  

l oca t ion  f o r  a d ipole  f i e l d .  It i s  a l i n e  of fo rce ,  given by 
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Ray (1963) has shown t h a t  for a more gene ra l  a x i a l l y  symmetric f i e l d  t h e  

v e r t i c a l  cu to f f  r i g i d i t y  i s  s t i l l  constant  a long a l i n e  of fo rce .  There- 

L'ore w e  denote by L 

t a r y  value and use (11) t o  evaluate  ymax. 

8 and 9,  it i s  easy t o  f i n d  values f o r  Jo, to, and T i n  (10) and t o  read 

o f f ,  f o r  t h e  outbmnd and inbound l e g s  sepa ra t e ly ,  values for  L 

Equation 9 can then be used t o  give as a funct ion of r and 8 ,  and 

t h e  L value where 5 f a l l s  t o  h a l f  i ts  in t e rp l ane -  
C 

From graphs such as Figures 

i n  (11). 
C 

t h i s  can be compared with t h e  experimental p r o € i l e  of t he  p la teau  edges. 

This procedure has been c a r r i e d  out f o r  t h e  s e v e r a l  passes during 

t h i s  storm. The dashed l i n e  i n  Figure 8 i s  the  r e s u l t  f o r  pass number 5 .  

Agreement with the  observed counting ra te  p r o f i l e  i s  good. Figure 6 

shows a more d i f f i c u l t  s i t u a t i o n  a t  t he  onset of the  event where t h e  

s a t e l l i t e  d i d  no t  measure the  in t e rp l ane ta ry  f l u x  and where the  in -  

t e n s i t y  w a s  increasing a t  an unknown r a t e .  By t r i a l  and e r r o r  a d j u s t -  

ment of t h e  i n t e n s i t y ,  t i m e  cons t an t ,  and one c u t o f f ,  a s a t i s f a c t o r y  

f i t  w a s  obtained, as shown by the  dashed l i n e .  Pass 3 shares  with 

pass 1 the  d i f f i c u l t y  t h a t  t he  in t e rp l ane ta ry  f l u x  w a s  not  measured, 

although t h e  decay time can be s a f e l y  assumed the  same as i n  t h e  

neighboring passes.  Adjustment of t h e  i n t e n s i t y  and one cu to f f  gives  

the  f i t  shown i n  Figure 7. This I s  t he  worst f i t  of t he  s e r i e s ,  and 

shows need of a d i f f e r e n t  y f o r  the  outgoing and incoming legs of 

t he  pass .  Pass 2 ,  Figure 9, is very s a t i s f a c t o r y ,  and the  f i t  becomes 

an i n t e r p r e t a t i v e  a i d  by giving evidence t h a t  t he  s a t e l l i t e  grazed r+ 

f o r  a long t i m e  on t h e  way out .  I n  a l l  but t h e  two passes mentioned 

lTlE3,X 

t he  parameters of t h e  i n t e r p l a n e t a r y  f lux are measured s e p a r a t e l y  from 
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t he  c u t o f f s .  Thus t h e  pos i t i on  and width of t h e  cu to f f  p r o f i l e  a r e  

determined by only one parameter, ymax, and f o r  a v a r i e t y  of cases  

t h i s  g ives  a good f i t  t o  the  d a t a .  This success  suggests t h a t  i n  high 

a l t i t u d e  surveys the  word cu to f f  i s  most meaningfully appl ied  t o  t h a t  

po in t  where t h e  omnidirect ional  i n t e n s i t y  f a l l s  t o  ha l f  the  p la teau  

value,  and t h a t  t h i s  measurement i s  i n t e r p r e t a b l e  i n  terms of a modi- 

f i e d  Starmer theory.  

Values of the  f i t t i n g  parameters used f o r  e i g h t  passes  during 

t h i s  event a r e  l i s t e d  i n  Table 11. I n  some cases  an improvement i n  

w a s  poss ib le  using a b e s t - f i t  c r i t e r i o n  r a t h e r  than reading L ymax C 

f r o m t h e  graph. The t a b l e  shcjws b e s t - f i t  va lues .  The departure  from 

Stcrmer theory  i s  ev ident ,  a s  i n  every instance y i s  g r e a t e r  than max 

un i ty .  I n  t h i s  regard it should be rioted t h a t  t h e  use of the  maximum 

average energy allowed by the  A1 : A2 r a t i o  gives  a m i n i m u m  value f o r  

and thus a minimum Yalue f o r  y . A more r e a l i s t i c  C would be Cs t  max s t  

s l i g h t l y  l a r g e r ,  and would increase  y and s l i g h t l y  lower the  q u a l i t y  

of the  f i t s  i n  Figures 6 - 9. 
max 
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Modified St&mer Cutoff Analysis 

Pass 

1 
2 

ymax * 
J t Outbound Inbound 

(./% (day 1 (%) 
to 

(days 1 
245 333 7.0 - 0715 1.12 1.12 
245 9 75 
246.0 
246 333 
246.5 
247.0 
247.25 
247 0 5 
247.875 

155 
90 9 

37 
16. 
4.5 

0.65 

1.52 
1.2 

36 
36 

9 36 

36 

36 

36 

36 
36 

1.15 
1.15 - 
1-55  
1.53 
1.63 
1.63 
1.245 

1-33 
1.15 

1.58 

1.285 

- 
1.49 

1 565 
1.4 

* Cst w a s  taken as 12.2 R f o r  all passes. E 
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The modified Starmer theory  given here could be r e f ined ,  bu t  t o o  

many unknowns creep  i n  t h a t  a r e  not  reso lvable  by t h e  present  experi-  

ment. For instance a d i s t r i b u t e d  energy spectrum can be considered 

by using i n  equation 9 a s u i t a b l y  averaged C 

a l i z a t i o n  introduces a need t o  know the  energy dependence of ymx. 

An experiment with mul t ip le  energy windows is  des i r ab le  t o  resolve 

t h i s  unknown. A s  another  refinement one could consider  a y-dependent 

transmission c o e f f i c i e n t  a t  t he  ga t e ,  as suggested by Ray (1964). 

Again, more measurements a r e  needed t o  resolve t h i s  dependence. 

important refinement would be t o  extend the  t h e o r e t i c a l  formulation t o  

an asymmetrical magnetosphere. E f f o r t s  i n  t h i s  d i r ec t ion  undertaken 

by Friedland (1967) show a discouraging complexity. 

_. Separation of Trapped and Untrapped P a r t i c l e s  

However t h i s  gener- s t '  

An 

The s p a t i a l  proximity of the  untrapped s o l a r  protons t o  the  

trapped e l ec t rons  and protons may shed l i g h t  on the  physical  condi t ions 

f o r  ad iaba t i c  t rapping.  If the re  e x i s t s  a geometrical  boundary which 

s e t s  t he  observed l i m i t s  of trapped and untrapped motion, it should be 

the minimum dis tance  a t  which protons d i r ec t ed  due west can remain un- 

trapped. 

proton plateau.  

l i m i t  f o r  e lec t rons .  We have seen i n  Figures 5 through 9 t h a t  t h e  

e l ec t ron  f luxes  decrease approaching the  proton p la teau  and f a l l  t o  

zero s h o r t l y  p a s t  t h e  edge. A s  it i s  most u n l i k e l y  t h a t  we have m i s -  

taken the  p la teau  edge, the  e lec t rons  de tec ted  pas t  t h i s  pos i t i on  

challenge the  geometric boundary model. 

This d i s tance ,  given by equation 4,  i s  r+, the  edge of t h e  

It may or may not be t h a t  r+ i s  the  outer  t rapping  

I f  they  mirror  a t  the  same 
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pos i t i on  as the  protons,  the  d i s t i n c t i o n  between ad iaba t i c  and non- 

ad iaba t i c  motion mst be determined by t h e  d i f f e rence  i n  t h e i r  

r i g i d i t i e s ,  no t  by t h e  f i e l d  geometry. On the  o the r  hand, i f  they  

mirror  a t  higher l a t i t u d e s  than the  protons,  they  may be a t t r i b u t e d  

t o  s h e l l - s p l i t t i n g .  

around t h e  equator on the  n ight  s ide  of the  e a r t h  where p a r t i c l e s  with 

small p i t c h  angles  can be permanently t rapped but  those with l a r g e  

p i t c h  angles  a r e  psuedo-trapped. This  i s ,  t h e y  cannot complete a 

A s  shown by Roederer (1967) the re  is  a zone 

d r i f t  l ong i tud ina l ly  around the  e a r t h  without being l o s t .  Thus 

trapped and untrapped p a r t i c l e s  can appear on the  same l i n e  of f o r c e ,  

but  with d i f f e r e n t  p i t c h  angles.  Because the  e l ec t ron  p i t c h  angles  

ark not  measured, t h i s  explanation cannot be checked and the  p o s s i b i l i t y  

of a geornet,yically determined t rapping boundary remains open. 

Di rec t  entrapment of s o l a r  protons has been thought of as a 

possible  source f o r  the  high-energy r a d i a t i o n  b e l t s .  Therefore,  it i s  

df i n t e r e s t  t o  examine the  separa t ion  between trapped and untrapped 

p a r t i c l e s  of the  same r i g i d i t y  t o  see whether any merging occurs.  I n  

Figures 4 through 9 and i n  a l l  o ther  passes  the  two zones of ene rge t i c  

protons a r e  e n t i r e l y  separa te ;  between them i s  a b a r r i e r  where no 

protons a r e  found. The b a r r i e r  counting r a t e  of .1 t o  .2 shown i r  

Figures 5 through 9 r ep resen t s  an upper l i m i t ,  as it i s  determined by 

the  r e c i p r c c a l  of t he  i n t e r v a l  between successive counts ,  and the  

s a t e l l i t e  passes  from one zone t o  t h e  o ther  i n  a time smaller than t h e  

average i n t e r v a l  between background counts.  Therefore t h e r e  i s  no 

support  f o r  d i r e c t  entrapment, al though t h e  mechanism i s  too  problemat- 

i c a l  f o r  a s t rong  case t o  be e s t ab l i shed  a g a i n s t  it. 
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V. INTERPLANETARY DIFFUSION OF SOLAR PROTONS 

It has been e s t ab l i shed  t h a t  t he  p l a t eau  r ep resen t s  t h e  i n t e r -  

p lane tary  value of t h e  proton f lux .  Therefore our  data a r e  r e l evan t  

t o  y e t  another  t op ic  concerning s o l a r  protons: t h e i r  propagation i n  

in t e rp l ane ta ry  space. Because o f  t he  na ture  of  t h e  d e t e c t o r ,  d i r e c t i o n a l  

or s p e c t r a l  d i scr imina t ion  i s  impossible,  but  good in tens i ty- t ime pro- 

f i l e s  were obtained during the  events of  March and September 1966. 

(See Figures  3 and 11.) 

Models of i n t e rp l ane ta ry  propagation i n  which the  protons undergo 

a random walk can be represented by d i f fus ion  equations where the  so lu t ions  

p red ic t  the  time dependence of t h e  i n t e n s i t y  a t  ea r th .  Let u s  cons ider  

the'models of Axford (1965), and of Parker (1963) as developed by 

Krimigis (1965). In  t h e  l a t t e r  model the  dimensional i ty  of space i s  

represented i n  genera l  form by an index a ,  and an i s o t r o p i c  d i f f u s i o n  

equation is wr i t t en  i n  which t h e  d i f fus ion  c o e f f i c i e n t  v a r i e s  as x , P 

where x i s  the  d is tance  t o  the  sun. For an i n i t i a l  condi t ion cons i s t ing  

of impulrive i n j e c t i o n  a t  the  o r i g i n ,  the  so lu t ion  p r e d i c t s  t h a t  

In (J tn) = C1 + C2 (l/t) 

where c u + l  n =  - 
2 - P  

In  t e s t i n g  t h i s  model aga ins t  experimental  data, var ious values  of n 

a r e  t r i e d  w i t h  t he  purpose of f ind ing  one t h a t  orders  t he  data i n  t h e  

s t r a i g h t  l i n e  given by (12) .  

The pos i t i on  of t h e  sun on the  s o l a r  d i s c  does no t  e n t e r  i n t o  t h i s  

model, al though observa t iona l ly  it i s  known t o  be important. Axford 
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provides f o r  such a p o s i t i o n  dependence by assuming t h a t  p a r t i c l e s  which 

reach t h e  e a r t h  must f irst  d i f f u s e  i n  two dimensional space over t h e  

face of t h e  sun from t h e  f l a r e  t o  t h e  tube of fo rce  t h a t  encloses  t h e  

ea r th .  Their  subsequent d i f fus ion  t o  t h e  e a r t h  follows t h e  same equation 

adopted by Krimigis, wi th  x* being defined by Axford as t h e  v a r i a t i o n  

of t h e  c ros s  sec t ion  of the  tube of fo rce .  Because of t h i s  s i m i l a r i t y  

t h e  so lu t ions  f o r  the  two models approach t h e  same form f o r  l a r g e  t .  

Pos i t i on  dependence a l s o  r e s u l t s  i f  one uses  an an i so t rop ic  d i f -  

fusion equation. 

der ive a r e s u l t  f o r  l a r g e  t which follows (12)  with n = 3 / 2 .  

(1967) has a l s o  developed an an i so t rop ic  model with the  a d d i t i o n a l  

Fibich and Abraham (1965) d i scuss  such a model and 

Burlaga 

f ea tu re  of an absorbing boundary 1 or 2 AU beyond e a r t h .  During the r i s e  

Burlaga looks f o r  n = 512 i n  (12), followed by an exponential  decay which 

i s  imposed by t h e  boundary. 

Evidently a r e l a t i o n  i n  t h e  form of (12) and the  t r i a l  method used 

by Krimigis i s  a s o r t  of u n i v e r s a l  t e s t  f o r  many d i f f i s i o n  models. The 

new da ta  f o r  the  March and September storms have been p l o t t e d  by t h i s  

technique with negat ive or indecis ive r e s u l t s .  Because of t h e i r  

u n s a t i s f a c t o r y  na tu re  these graphs are not shown, but some discussion 

i s  appropr i z t e .  

The sharp peak i n  t h e  March e v e n t ' s  p r o f i l e  cannot be s t r a igh tened  

out .  

Primbisch, and Anderson's 020-1 ana lys i s .  

This i s  true a l s o  f o r t h e v e l a  da t a  and agrees  with Kahler, 

During the  decay phase aione,  
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n = 3 i n  equation 12  i s  not  out  of t h e  quest ion,  but during the  onse t  

no choice of n y i e l d s  a good r e s u l t ,  even when the  zero time i s  var ied.  

It  must be acknowledged, though, t h a t  t h e  onse t  of an event i s  more 

d i f f i c u l t  t o  t e s t  than any o ther  phase, because the  low counting r a t e s  

cause s t a t i s t i c a l  e r r o r s ,  ve loc i ty  d ispers ion  causes bad energy i d e n t i -  

f i c a t i o n ,  and the  e r r o r s  of a s s m i n g  a d e l t a  f’unction i n j e c t i o n  and 

iden t i fy ing  the  zero time a r e  more c r i t i c a l .  The f l a r e  which t r i g g e r e d  

the  March event occurred a t  42 0 W s o l a r  longi tude,  ev ident ly  a t  the  

foot  of that  tube of force  t h a t  contained the  ea r th .  The narrowness of 

t he  peak i s  out of keeping with d i f fus ive  behavior and the  conclusion 

of Kahler, Primbsch and Anderson, t h a t  the  p a r t i c l e s  underwent too few 

s c a t t e r s  t o  obey a d i f fus ion  l a w ,  may be e s s e n t i a l l y  co r rec t .  

The September event w a s  of longer  durat ion and more nea r ly  r e -  

sembles a d i f fus ion  model. The b e s t  f i t  to t h e  d a t a  comes between 

n = 4 and 4.5, with no systematic devia t ion  from a s t r a i g h t  l i n e .  There 

a r e ,  however, many shor t  term depar tures  f a r  ou ts ide  s t a t i s t i c a l  e r r o r .  

For l a r g e  t equation 12  approximates a power l a w  decay with exponent n ,  

but as can be seen i n  Figure 11, the re  a re  i r r e g u l a r i t i e s  i n  the  decay 

curve which devia te  from s w h  a l a w .  Among poss ib le  explanations for 

these  i r r e g u l a r i t i e s  a r e  f i lamentary s t r u c t u r e  i n  in t e rp l ane ta ry  space, 

p a r t i c l e  s torage ,  emission of new p a r t i c l e s ,  and time va r i a t ions  of t h e  

propagation condi t ions.  Because two new f l a r e s  occurred on September 4 

and 5,  t h e  last  two hypotheses deserve s p e c i a l  considerat ion.  The 

poor time c o r r e l a t i o n  between the  new f l a r e s  and f l u x  increases  causes 

us t o  r e j e c t  the  p o s s i b i l i t y  of new p a r t i c l e  emissions. However, each 
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of t h e  new f l a r e s ,  as wel l  as the o r i g i n a l  f l a r e ,  t r i gge red  a magnetic 

storm and a Forbush decrease 1 1/2 t o  3 days l a t e r  a t  the  ear th .  Here 

i s  evidence f o r  v a r i a t i o n  i n  in t e rp l ane ta ry  condi t ions,  and i r regu-  

l a r i t i e s  i n  the  da t a  might be explained by a boundary's sweeping 

pas t  the  e a r t h  w i t h  each storm f r o n t  and e s t ab l i sh ing  a new i n t e r -  

p lane tary  order.  
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V I .  THE CUTOFF ALTITUDE DURICJG A MAGNETIC STORM 

I n  sec t ion  ~ v w e  pointed out t h a t  t h e  s o l a r  proton cu to f f s  decreased 

during t h e  geomagnetic storm of September 3 - 4, 1966. 

t h e  cu to f f s  read from the  data without b e n e f i t  of a b e s t  f i t  t o  t h e  

Table I11 l is ts  

modified St&mer theory.  

t i o n  of t h e  s a t e l l i t e  and the  values  of two geomagnetic parameters a t  

the  time of t h e  measurements. I n  t h i s  s ec t ion  and i n  the  appendix we 

w i l l  i nves t iga t e  the  co r re l a t ion  of  t h e  cu tof f  a l t i t u d e  with magnetic 

storm parameters and consider t h e i r  cause and e f f e c t  r e l a t ionsh ips .  

Spec i f i ca l ly ,  we s h a l l  prove t h a t  a mechanism stronger  than the  r i n g  

current  causes the  cu to f f s  t o  be lowered. 

Included a r e  information regarding the  posi-  

F igme 12 shows a p l o t  of the data vs. time. Dst i s  a measure of 

t he  geomagnetic r i n g  cur ren t ,  and has been computed two ways. A ground- 

based measurement was obtained by averaging the  departures  from t h e  

normal hor izonta l  f i e l d  components a t  San Juan and Honolulu. The o the r ,  

s a t e l l i t e -based  determination was made by measuring t h e  reduction of  

t h e  trapped proton f l u x  caused by be ta t ron  dece lera t ion  and computing 

the  r ing  cur ren t  required t o  produce t h i s  e f f e c t  a f t e r  t he  fashion of 

McIlwain (1966). 

Additional ground-based measurements of the  r i n g  cur ren t  a r e  

shown i n  Figure 13, where the  hor izonta l  component i s  shown f o r  five 

s t a t i o n s  equal ly  spaced about t h e  equator.  

see t h e  degree of asymmetry of t he  r ing  cur ren t  as w e l l  as the  presence 

of bay a c t i v i t y ,  o f t en  near l o c a l  midnight. 

I n  t h i s  f i gu re  we can 



TABLE I11 

TABLE: OF SOLAR PROTON CUTOFF@ OBSERVED BY EXPLORER 26 AFTER 

THE SEPTEMBER 2, 1966 Fl;ARF: 

Date 

9/2/66 
9/2/66 
9/2/66 
9/2/66 
9/2/66 
9/3/66 
9/3/66 
9/3/66 
9/3/66 
9/4/66 
9/4/66 
9/4/66 
9/4/66 
9/4Y66 
9/4/66 

Time Local Time 

0954 
1425 
1804 
2344 

2351 
1142 
1631 

1909 
2345 
0236 

0947 

1812 
2122 

0654 

1434 

2218 

1925 
2328 
2018 
2125 

1808 
0002 

1819 

1822 
2311 
1800 

2345 

2 340 

1924 
2242 

B/B0* 

2.045 
2.018 
2.962 

1.129 

3 9 067 
1.029 

1.395 
1.020 

1.196 
1.652 
3.011 
1.361 

1.747 

1 - 0775 

1.654 

L* 

5.2f .i 

5*3* *05 

4.65* .05 

5.13 .15 
5.1* .15 
3.9* .1 
4.1* .1 
3.75* 01 

3.75* 015 
3.7* .1 

3*9* -05 
3*75* - 2  

4.35* .1 

4.9* .2 

4.75* .2 

H 

Dst 

- 14 
- 7  
+ 7  
- 4  
- 4  
- 42 

- 58 
- 70 

-154 
-198 
- 184 

-133 
- 99 

-105 

- 90 

KP 

2- 

3- 
4 
0 

30 
30 
6- 

0 
6 

7+ 
9- 
9- 
7+ 
6 
6- 

3+ 

0 

3, 

* B, L computed from in t e rna l  f i e l d s  only. 

H Dst obtained by averaging the  horizontal  component at  San Juan and 

Honolulu, after subtract ing t h e  quiet  day averages from August 

and September. i s  given in  y ( l y  = 10-5 gauss) Dst 

@ Cutoffs measured as the  L value where the  east-west average solar proton 

f l u x  fa l ls  t o  half t he  plateau value. 



The cu tof f  L value i s  p l o t t e d  aga ins t  each of  the two geomagnetic 

The th in  t r a c e  on the  l e f t  hand p l o t  follows parameters i n  Figure 14. 

the  time sequence of  t he  po in t s ,  ordered counterclockwise. Because 

outbound crossings occur i n  t h e  l o c a l  evening near  the equator ,  whereas 

inbound crossings occur a t  higher l a t i t u d e s  near  l o c a l  midnight, t h e  

crossings have d i f f e r e n t  symbols. 

d i s t i n c t i o n  helps t o  order  t h e  data.  

It i s  uncer ta in  whether o r  not  t h i s  

Th i s  f i g u r e  shows the  c o r r e l a t i o n  between the  cu tof f  and each geo- 

magnetic parameter d i r e c t l y .  K was used f o r  t h i s  study because of  

i t s  long-standing, u n i v e r s a l  app l i ca t ion  t o  geomagnetic dis turbances.  

The r i n g  cu r ren t  index w a s  chosen because it has played a prominent 

p a r t  i n  the  theo r i e s  proposed t o  explain t h e  sub-Stkmer pene t ra t ion  of 

Dst lagging i n  phase cosmic rays.  We see a b e t t e r  co r re l a t ion  wi th  K 

behind the  cu to f f .  However, our s t ronges t  argument aga ins t  a r i n g  

cur ren t  cause f o r  the  lowered c u t o f f s  i s  based on the p o l a r i t y  of t h e  

change, no t  j u s t  on i t s  phase. Cosmic rays which come no c l o s e r  t o  the  

e a r t h  than 3 1/2 t o  5 e a r t h  r a d i i  remain outs ide  the  region where the  

r i n g  c u r r e n t ' s  e f f e c t  would lower t h e i r  cu to f f s .  These p a r t i c l e s  see 

the r i n g  cur ren t  from the  outs ide ,  where the f irst  and main term i n  an 

expansion of the  dis turbance f i e l d  i s  a d ipole  of t he  same p o l a r i t y  as 

the  e a r t h ' s  dipole .  

r a i s e  the  cu to f f ,  because it increases  the  Stormer u n i t ,  and thus t h e  

length  sca l e  of the r e s u l t i n g  cu to f f s .  

P 

P' 

Strengthening the  e a r t h ' s  dipole  moment should 

This  argument i s  not  p rec i se ,  of course, although it should render 

the r e s u l t  p l aus ib l e .  An a i r t i g h t  argument requi res  considerably more 
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d e t a i l ,  and s ince  our conclusion i s  t h a t  a r i n g  cu r ren t  i s  n o t  t h e  

p r i n c i p a l  mechanism, t h i s  argument i s  r e l ega ted  t o  t h e  appendix. There 

a Stsrmer-like ca l cu la t ion  i s  done f o r  t h e  equa to r i a l  plane,  and it i s  

shown t h a t  any symmetrical model of the r i n g  cu r ren t ,  t he  magneto- 

spheric  boundary cu r ren t ,  or  the  r i n g  and boundary cu r ren t s  combined 

tends t o  r a i s e  the  e q u a t o r i a l  cu to f f  a l t i t u d e .  The observat ions of 

course do not  disprove t h a t  a r i n g  cur ren t  e x i s t s  or t h a t  it tends t o  

change t h e  c u t o f f s  as ca lcu la ted .  They merely prove t h a t  t he re  i s  

another mechanism which a c t s  i n  t h e  other  d i r e c t i o n  a t  the  equator  and i s  

more e f f e c t i v e  the re .  It i s  n a t u r a l  t o  suppose t h a t  t h e  o ther  mechanism 

i s  more e f f e c t i v e  a l s o  a t  t h e  e a r t h ' s  sur face  where t h e  r ing  cu r ren t  

does operate  i n  t h e  r i g h t  d i r e c t i o n .  

A word of j u s t i f i c a t i o n  may be des i red  regarding the  apparent 

paradox t h a t  a symmetrical r i ng  cu r ren t  a c t s  t o  r a i s e  t h e  cu tof f  a t  

the  equator and t o  lower it a t  t he  e a r t h ' s  sur face .  I f  we use the  

r e s u l t  of Sauer and Ray (1963) t h a t  the cu tof f  r i g i d i t y  i s  constant  

along a l i n e  of  fo rce ,  t h e  paradox demands t h a t  t h e r e  i s  a storm-time 

l i n e  of force which has i t s  foo t  a t  a lower l a t i t u d e  and crosses  t h e  

equator a t  a higher a l t i t u d e  than a quiet-t ime l i n e  of force .  This i s  

e n t i r e l y  reasonable.  A r i n g  cu r ren t  i n f l a t e s  t h e  magnetosphere and 

s t r e t c h e s  t h e  l i n e s  of force  outward a t  t h e  equator ,  so  t h a t  t h e  above 

demand can be met. 

With the  r i n g  and boundary cu r ren t  discounted as t h e  primary cause 

of the  storm-time cu to f f  depression,  t h a t  agent which seems most l i k e l y  

t o  produce such an e f f e c t  i s  the  geomagnetic t a i l .  Indeed, Reid and 
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Sauer (1967) and Gall, JiGenez, and Camacho (1967) have r e c e n t l y  pro- 

posed t h a t  t h i s  i s  t h e  cause.  Although our da t a  cannot prove t h i s  

hypothesis,  they  may a$ l e a s t  provide a modest t e s t .  

i n t eg ra t ion ,  G a l l  e t  a l .  showed t h a t  a t  t h e  e a r t h ' s  sur face  t h e  c u t o f f  

r i g i d i t y  a t  a given l a t i t u d e  i s  reduced by an increase  i n  the  t a i l  

f i e l d  s t r eng th .  It a l s o  follows t h a t  t he  cu to f f  l a t i t u d e  f o r  a given 

By t r a j e c t o r y  

r i g i d i t y  i s  so  reduced. If we use the  experimental  r e s u l t s  of 

Behannon and Ness (1966) t h a t ,  s t a t i s t i c a l l y ,  the  t a i l  f i e l d  s t r eng th  

c o r r e l a t e s  p o s i t i v e l y  with K it follows t h a t  cu to f f  l a t i t u d e s  should 

c o r r e l a t e  nega t ive ly  with K . 
Van Allen (1964), although a t  the  time they  a t t r i b u t e d  i t  t o  the  r i n g  

P' 
T h i s ' r e s u l t  has been shown by Lin and 

P 

cub-ent. The t e s t  f o r  a s i m i l a r  explanat ion of t h e  c o r r e l a t i o n  between 

equa to r i a l  cu to f f  and K i s  t o  demonstrate t h a t  a s t rengthened t a i l  

reduces the  equa to r i a l  cu to f f  r i g i d i t y  and a l t i t u d e .  This r e s u l t  i s  t o  

be expected from t r a j e c t o r y  i n t e g r a t i o n s  i n  t h e  fashion of G a l l  e t  a l . ,  

P 

s ince  t h e i r  magnetospheric model contained no r i n g  cu r ren t ,  and the re -  

fore  und i s to r t ed  connection i s  expected from t h e  e a r t h ' s  sur face  t o  

the  equator.  
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V I I .  DISCUSSION AND CONCLUSIONS 

The conclusion s t a t e d  i n  sec t ion  V I  t h a t  an asymnetric f i e l d  

i s  needed t o  lower cosmic r a y  cu to f f s  e s t ab l i shes  a new per-  

qec t ive  w i t h  which t o  review our discussion i n  sec t ion  IV concerning the  

motion of s o l a r  protons i n  t h e  magnetosphere. It may seem t h a t  t h e  

asymmetry demanded by sec t ion  V I  and t h e  appendix threa tens  sec t ion  I V ' s  

modified St'drmer theory,  based as it i s  on a x i a l  symmetry. The explana- 

t i o n  of t h i s  paradox i s  t h a t  sec t ion  I V  used a x i a l  symmetry only i n  t h e  

v i c i n i t y  of t he  cu tof f  a l t i t u d e ,  r , giving up the  Starmer condi t ion on 

ymax * 

t r a r y  e f f e c t s  of a x i a l l y  symmetric per turba t ions  on 

es tab l i shed  by condi t ions a t  the ga te  a l t i t u d e ,  r asymmetry i s  de- 

manded no lower than t h i s .  Our discussion i s  s e l f  cons i s t en t  i f  the  

C 

I n  the  appendix t h e  demand f o r  asymmetry was based on the  con- 

vmsx is Since 
X l a X .  

g'  

f i e l d  l o s e s  i t s  symmetry somewhere between r and r . 
C 63 

Then the  appendix a c t u a l l y  complements sec t ion  N, as it c l a r i f i e s  the  

meaning of y and j u s t i f i e s  the  departure  from StErmer's value.  
lKBX 

Notwithstanding t h e  p o s s i b i l i t y  of a se l f - cons i s t en t  discussion,  

t he  experimental da ta  s t i l l  b e l i e  t he  assumption of a x i a l  symmetry used 

i n  the  modified Stb'rmer model. 

14 t h e  d i f fe rence  between outbound and inbound cu to f f s  i s  most l i k e l y  

I n  t a b l e s  I1 and I11 and Figures 12 and 

t , i  be a l o c a l  time e f f e c t .  Furthermore, o ther  measurements have c l e a r l y  

es tab l i shed  t h a t  s o l a r  proton cu to f f s  exh ib i t  l o c a l  time asymmetry 

(Paulikas e t  a l ,  1968; Stone, 1964). 

model must be regarded as a s tage  of approximation. 

t o  descr ibe d i r e c t i o n a l  cu to f f s ,  acceptance cones, and r, 0 p r o f i l e s .  

A parameteric s tudy of y should y i e ld  valuable in s igh t s .  However, 

Therefore the  modified St%mer 

It i s  good enough 

3TBX 
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refinements a r e  des i r ed  as suggested i n  sec t ion  I V ,  and p a r t i c u l a r l y  a 

l o c a l  t i m e  dependence i s  needed. 

This a r e a ,  which i s  a def ic iency of t he  Stgrmer theory,  i s  the  

s t rong po in t  of t h e  proposal by Reid and Sauer. 

c a r r i e d  out i n  the  noon and midnight meridians, they propose t h a t  t h e  

l i m i t s  of trapped and untrapped motion occur a t  a geometrical  boundary. 

S e t t i n g  t h e  pos i t i on  and height of t h i s  boundary on the  n igh t  s i d e  

determines a cosmic r ay  cu-t.of'f, and quasi-adiabat ic  d r i f t  maps t h i s  

cu to f f  onto the  day s i d e .  S a t i s f a c t o r y  l o c a l  time e f f e c t s  can be thus 

obtained. Because of t he  a r b i t r a r y  handling of the  n igh t s ide  boundary, 

t h i s  model i s  too ad hoc t o  be phys ica l ly  satisf 'ying. but it does pro- 

vide an i n t e r e s t i n g  hypothesis and an appealing r a t i o n a l e  f o r  t h e  in -  

f luence of t he  geomagnc ta ic t a l l .  

I n  a model which i s  

The m u s t  r igorous proof' f o r  t h e  t a i l ' s  e f f e c t  *on geomagnetic cutoi'f's 

Vsing the  Mead-Williams magnetosphere, i s  offered by G a l l  e t  a1 (1967). 

which i s  the  most complete model a v a i l a b l e ,  they have done t r a j e c t o r y  

in t eg ra t ions  for p a r t i c l e s  a r r i v i n g  a t  the e a r t h ' s  sur face .  Their r e -  

s u l t s  include both a lowering of t h e  cuto€fs  with increasing t a i l  f i e l d  

s t r eng th  and a l o c a l  time v a r i a t i o n .  The penal ty  f o r  such r i g o r ,  of 

course,  i s  t h a t  t he  computer i n t e g r a t i o n  tends t o  mask systematic e f -  

f e c t s  and f a i l s  t o  s impl i fy  t h e  r e s u l t s . %  

I n  conclusion, w e  be l i eve  t h a t  t he  geomagnetic t a i l  i s  t h e  primary 

agent i n  lowering s o l a r  cosmic r a y  c u t o f f s .  The observations made by 

Explorer 26 and reported i n  t h i s  paper prove t h a t  t h e  r i n g  cu r ren t  has 

a secondary inf luence,  and the  models and c a l c u l a t i o n s  discussed here 

point  t o  the  t a i l  as the  most e f f e c t i v e  agent.' 
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Its  low inc l ina t ion ,  high e c c e n t r i c i t y  o r b i t  a l s o  enabled 

Explorer 26 t o  take prolonged samples of t h e  in t e rp l ane ta ry  i n t e n s i t y  

during apogees. The i n i t i a l  arrival of p a r t i c l e s  was recorded February 

5, 1965, March 24, 1966, and August 28, 1966, and u s e f i l  t ime- in tens i ty  

p r o f i l e s  were obtained March 24, 1966 and September 2 - 6, 1966. These 

two cases  probe the l i m i t a t i o n s  of i n t e rp l ane ta ry  d i f fus ion  models. I n  

t he  former case it i s  thought t h a t  t h e  p a r t i c l e s  reached t h e  e a r t h  before 

c o l l i s i o n s  had randomized t h e i r  v e l o c i t i e s  s u f f i c i e n t l y  t o  e s t a b l i s h  a 

d i f fus ion  regime. In the  l a t t e r  case departures  from a simple d i f fus ion  

time p r o f i l e  seem t o  be assoc ia ted  w i t h  i n t e rp l ane ta ry  dis turbances which 

changed the order of the  magnetic f i e l d .  

During the  September event u s e f u l  measurements were a l s o  obtained of 

so l a r  proton i n t e n s i t i e s  and an iso t ropies  i n  t h e  magnetosphere. It i s  

shown t h a t  a modified Starmer theory i s  a s a t i s f a c t o r y  model f o r  pre-  

d i c t ing  the  s i z e  of t he  acceptance cone and thus the  cu tof f  p r o f i l e  of t h e  

omnidirectional counting r a t e .  
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Figure Captions 

Figure 1 The e f f e c t i v e  cross-sect ion of de t ec to r  A versus  energy. This 

i s  the  geometric f a c t o r  f o r  a d e l t a  funct ion energy spectrum. 

Figure 2 The geometric f a c t o r  of de t ec to r  A f o r  a power l a w  energy spectrum. 

Figure 3 The s o l a r  proton event of March 24, 1966 a s  seen by Explorer 26 

and Vela. 

j u s t ed  t o  match t h a t  of Vela for 85 MeV protons.  

Explorer i s  near  midnight. 

The count r a t e  sca le  f o r  Explorer 26 has been ad- 

Local time a t  

Figure 4 The a r r i v a l  of t he  February 5 ,  1965 s o l a r  protons.  The pos i t ion  

of the  s a t e l l i t e  i n  B ,  L space i s  given by the  L sca le  on t h e  top 

of the f igure  and the  B//B 

16 hours t o  14, hours. 

t r a c e  versus time. Local time i s  
E& 

Figure 5 The onset of the August 28, 1966 so la r  proton event. 

t he  s a t e l l i t e  a r e  given by the  L sca le  a t  the  top  of the  f igure  

and the  B/’B 

t he  l i n e s  of force with the untrapped protons.  

B and L f o r  

t r a c e  versus time. Trapped e lec t rons  a r e  shown on 
E& 

Figure 6 The so la r  proton event of September 2 ,  1966, pass one. 

of Explorer 26 during t h i s  pass i s  shown i n  Figure 10. This i s  

the  f irst  pass a f t e r  the  f l a r e ,  and the in t e rp l ane ta ry  i n t e n s i t y  

i s  increas ing  with time. 

The o r b i t  

Figure 7 The s o l a r  proton event of September 2 ,  1966,pass th ree .  The 

o r b i t  of Explorer 26 during t h i s  pass i s  shown i n  Figure 10. 

Strong east-west e f f e c t  demonstrates t h e  d i r e c t i o n a l  dependence 

of p a r t i c l e  cu to f f s .  The modulation frequency i s  an alias of 

t h e  a c t u a l  spin r a t e .  
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Figure Captions (Continued) 

Figure 8 The s o l a r  proton event of September 2,  1966, pass f ive .  The 

o r b i t  of Explorer 26 during t h i s  pass i s  shown i n  Figure 10. 

The plateau covers a wide range of B and L ,  with east-west modu- 

l a t i o n  a t  the borders.  The slope of t he  p la teau  matches t h e  decay 

r a t e  measured from pass t o  pass. 

The so la r  proton event of September 2, 1966, pass two. 

o r b i t  of Explorer 26 during t h i s  event i s  shown i n  Figure 10. 

The o r b i t  of Explorer 26 during the  solar proton event of 

September 2, 1966. 

trapped r ad ia t ion  are s h m  i n  By  L space,  where B i s  normalized 

t o  the  equator. 

s a t e l l i t e  where data were taken. The dashed l i n e  ind ica t e s  

east-west asymmetry or s t rong s p a t i a l  g rad ien ts  of the  s o l a r  

p a r t i c l e s .  The s o l i d  l i n e  represents  periods where the  counting 

r a t e  has reached a near ly  constant p la teau .  M a x i m  L occurs 

a t  2100 l o c a l  time and the  northbound equator crossing 

(ascending node) is  a t  0420 l o c a l  time. 

The time h i s to ry  of the  September 2,  1966 so la r  proton flux. 

Explorer 26 apogee counting r a t e s  are compared with polar  cap 

data obtained by Bostrom with 1963-38c and Paulikas w i t h  

1966-7OA. 

the  energy range of de tec tor  A2, and appropriate  geometric and 

Figure 9 The 

Figure 10 

Six  o r b i t s  au ts ide  the  boundaries of the  

A t h i n  l i n e  represents  t he  t r a c k  of t h e  

Figure 11 

The measured polar  cap f luxes  were extrapolated over 

background cor rec t ions  made t o  compare wi th  Explorer 26. The 

ends of the  e r r o r  bars  represent  exponential  versus power l a w  

ex t rapola t ion ,  and the  pos i t ion  of t h e  dot  represents  t he  

au tho r ' s  judgment as t o  which i s  b e t t e r .  
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Figure Captions (Continued ) 

The time sequence of c u t o f f s  measured by Explorer 26 and o the r  

geomagnetic 6ata. The cu to f f s  were measured as the  L value 

where the  east-west average s o l a r  proton f l u x  f e l l  t o  ha l f  t he  

p la teau  value.  Ground-based Dst was obtained by averaging the  

hor izonta l  component a t  San Juan and Honolulu., a f t e r  sub t r ac t ing  

the  q u i e t  day averages from August and September. 

a l s o  determined from the  s a t e l l i t e  by measuring the  ad iaba t i c  

betatron dece lera t ion  of the  trapped protons and computing 

the  uniform r i n g  cu r ren t  f i e l d  requi red  t o  produce t h i s  e f f e c t .  

Open I >  i r c l e s  denote outbound cross ings  and closed c i r c l e s ,  

inbound cross ings .  

I,nchal time survey of tile r i n g  cu r ren t  of September 3 - 4, 1966. 

Hourly sca l ings  of  the  horizontal_ component a r e  shown for f i v e  

near -equator ia l  ground s t a t i o n s .  Local midnight i s  denoted 

by an M. 

Relat ion between the  equa to r i a l  proton c u t o f f s  and two geomagnetic 

parameters f o r  t he  event of September 2, 1966. 

c i r c l e s  denote outbound and inbound cross ings ,  respcc t ive ly .  

The time sequence i s  shown by the  l i g h t  t r a c e  on the  le f t -hand  

curve. 

Figure 12 

Dst w a s  

Figure 13 

Figure 1 4  

Open and closed 
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APPENDIX 

EQUATORIAL CUTOFFS WITH AN AXIALLY SYMMETRIC RING CURRl3NT 

In  t h i s  appendix we develop formulas, va l id  i n  the equator ia l  plane 

of an azimuthally symmetric magnetosphere, f o r  the  cutoff a l t i t u d e  of 

cosmic r ay  protons i n  the  energy range measured by Explorer 26. 

then study the theo re t i ca l  e f f ec t  of turning on a symmetrical r i ng  cur- 

ren t  and demonstrate t h a t ,  f o r  a reasonable model of the magnetosphere 

and fo r  almost any model of a r ing  current ,  i t s  e f f ec t  i s  t o  r a i s e  the  

We 

cutoff a l t i t ude .  

be explained by any s o r t  of symmetric r ing  current .  This problem i s ,  

of course, a special izat ion of the Stb'rmer problem; however, by re -  

s t r i c t i n g  our consideration t o  the  equator ia l  plane,  we are  able  t o  

generalize our magnetic f i e l d  model. 

We conclude t h a t  the data taken by Explorer 26 cannot 

Take a cy l indr ica l  coordinate system i n  which the magnetic f i e l d  

i s  everywhere p a r a l l e l  t o  ẑ  and 

general magnetic vector po ten t i a l  i s  

i s  posi t ive eastbound. A su i tab le  and 

i 

A' 
The in t eg ra l  i n  

current i n  many 

divergence-free 

4 (.> 

r 

t h i s  formula i s  

of our r e su l t s .  

a l l  we w i l l  give t o  describe the r ing  

Labeling it $ ( r ) ,  we can use the 

property of E' t o  wri te  

r r 

7 s  r BZ ( r )  dr = J r  BZ 
03 0 
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The Lagrangian i s  

6 
where t h e  symbol m s tands  f o r  the  r e l a t i v i s t i c  m a s s  

2 2  
Elo / J1 - v /c 

and i s  a cons tan t .  The EUer-Lagrange equation i n  the  c y c l i c  coordi-  

na t e  cp gives  

2 mr 4 + e/c Q ( r ) =  - 2  mvy 

Following Ray we have s e t  t he  in t eg ra t ion  cons tan t  t o  - 2 mvy. The 

parameter y i s  an i n i t i a l  condi t ion and w i l l  be important t o  the  d i s -  

cussion.  It has the  dimensions of length ,  and i f  Q vanishes a t  

i n f i n i t y ,  2 y i s  seen t o  be the  impact parameter of a cosmic r a y ' s  

i n i t i a l  t r a j e c t o r y .  It i s  pos i t i ve  f o r  a proton aimed t o  t h e  west of 

t h e  ea r th .  From the  conservation of energy we have 

2 1/2 mv2 = 1/2 m F + v ( r )  

where the  f i c t i t i o u s  radial  p o t e n t i a l  energy, V ( r ) ,  i s  given by 

This corresponds t o  the  expression i n  c l a s s i c a l  Stsrmer theory  t h a t  

determines the  zones of allowed ( E  - V ( r )  > 0)  and forbidden 

( E  - V ( r )  < 0)  motion. C lea r ly  E = V ( r )  de f ines  the  cu to f f  po in t s  of 

allowed motion where the  p a r t i c l e s  have no radial  ve loc i ty .  

I l l u s t r a t i o n  for a Dipole F ie ld  

These f e a t u r e s  a r e  a recognizable p a r t  of S ts rmer ' s  so lu t ion  i f  

t h e  formula f o r  a d ipole  f i e l d ,  - M / r ,  i s  used f o r  Q. r4 (E - V ( r )  ) 

i s  now a fou r th  degree polynomial and the  limits of allowed motion a r e  

the  r o o t s ,  given by 
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From here on t h e  u n i t  o f  l eng th  i s  t h e  customary Starmer u n i t  

There i s  a f o u r t h  r o o t  which i s  not  phys i ca l  as it i s  nega t ive  for a l l  

y. Also r and r become non-physical  i f  t h e  i n i t i a l  cond i t ion  satis-  
2 3 

f i e s  t h e  i n e q u a l i t y  

Y <  1 ( A 3  1 
The sma l l e s t  phys i ca l  r o o t  i s  always r and t h e  way t o  lower t h i s  

c u t o f f  i s  t o  r a i s e  y . However, as t h e  r o o t s  r and r in t e rpose  a f o r -  

1' 

2 3 
bidden zone between i n f i n i t y  and r when r and r a r e  r e a l ,  t h e  cosmic 

1 2 3 
r a y  t h a t  p e n e t r a t e s  deepes t  i s  t h a t  one wi th  maximum y s u b j e c t  t o  

condi t ion  A3 .  The c u t o f f  f o r  t h i s  p a r t i c l e  i s  (6 - 1) C s t .  

The Cutoff  i n  a General  F i e l d  
I 

To make a gene ra l  model of the  r e a l  f i e l d  t ake  a d i p o l e  plus  an 

unspec i f i ed  p e r t u r b a t i o n  i n  ( A 2 )  : 

P ( r )  = - M / r  + A P ( r )  

Now r4 ( E  - V ( r ) )  i s  n o t  g e n e r a l l y  a polynomial,  b u t  b a r r i n g  changes i n  

topology,  t h e  c u t o f f  w i l l  once aga in  be determined by t h e  maximum y 

f o r  which a p a r t i c l e  from i n f i n i t y  can reach  t h e  innermost r o o t .  The 

forbidden zone sh r inks  t o  a s i n g l e  g a t e  p o i n t  when V (r) = E and 

= 0, and t h e  s o l u t i o n  of t h e s e  simultaneous equat ions  determines d r  
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r t h e  pos i t ion  of t h e  ga te  po in t ,  and yg, t h e  c r i t i c a l  i n i t i a l  con- 

d i t i o n  for a p a r t i c l e  t o  reach the ga te .  Physically,  t he  ga te  i s  t h e  

distance a t  which a p a r t i c l e  whose r i g i d i t y  i s  impl i c i t  i n  Cst has a 

g’ 

rad ius  of curvature equal t o  r * i e ,  the  p a r t i c l e  can describe a 

c i r c l e  of rad ius  r w i t h  t h e  e a r t h  a t  the  cen te r .  A p a r t i c l e  which 

i s  i n i t i a l l y  aimed f a r t h e r  away from the e a r t h  ( y  > y 2  experiences 

smaller f i e l d s  and i s  not def lec ted  t h a t  c l o s e .  

g’ 

g 

A p a r t i c l e  aimed 

s l i g h t l y  c lose r  ( y  7 y 

below r . Minimum cutof f  i s  the  nad i r  of t h i s  loop, and it can be 

found by s u b s t i t u t i n g  y 

f o r  the  innermost root  r . The resu l t .  i s  

) hooks inward and executes a loop o r  loops 
g 

63 

i n t o  the  cu tof f  equation E = V ( r )  and solving 
g 

C 

where 

A s  before the  cu to f f  v a r i e s  i nve r se ly  as y and we can determine t h e  

di$ection i n  which the  cu to f f  w i l l  change by assess ing  t h e  per turba t ion’s  

e f f e c t  on y . Using the  so lu t ion  f o r  y and the  d e f i n i t i o n  of $ : 

P’ 

P g 

To f i r s t  order i n  

Y =  
P 
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where it i s  worth poin t ing  out t h a t  
n 

Using t h i s  r e s u l t  we can a s ses s  the  change i n  cu tof f  a l t i t u d e  with a 

minimum of information about t he  f i e l d  per turba t ion .  

I n f i n i t e  Dipole F ie ld  Plus a Ring Current 

A s  a f i r s t  example consider a r i n g  cu r ren t  superimposed on an 

i n f i n i t e  dipole f i e l d .  

St'drmer length  from the  o r ig in ,  which i s  15 t o  9 RE Over our d e t e c t o r ' s  

energy range and i s  12 R 

distance A B i s  s m a l l  and pos i t i ve ,  increasing r . By measurement 

r i s  between 3 and 5 R A s  t h i s  i s  near t h e  s e a t  of the  r i n g  cu r ren t ,  

assuredly the  quan t i ty  a @ ( re )  i s  more negative than A @ ( r  ). 

na t ive ly  one can say t h a t  t h e  magnetic f l u x  from the  r i n g  c u r r e n t ,  

The ga te  poin t  of the  unperturbed f i e l d  i s  one 

f o r  a t y p i c a l  (90 MeV) p a r t i c l e .  A t  t h i s  E 

g 

C E '  

A l t e r -  
g 

in tegra ted  from r t o  r i s  pos i t i ve  (northward). The e f f e c t  i s  t o  
C g '  

decrease y and s o  t o  r a i s e  r . Thus can the  promised r e s u l t  be ob- 

taimed with p r a c t i c a l l y  no information required on the  r i n g  cu r ren t .  

P C 

Magnetosphere with Added Ring Current 

In  t h e  previous model t h e  ga te  poin t  w a s  found t o  be a t  about 

12  RE. 

bounded by surface cu r ren t s  and t h i s  point i s  i n  in t e rp l ane ta ry  space 

This i s  bad, because we know t h a t  t h e  magnetosphere i s  a c t u a l l y  

where, i n  our symmetric approximation, t he re  i s  no f i e l d .  Obviously 

it i s  nonsense t o  t a l k  about a ga te  poin t  where t h e  f i e l d  i s  zero. 

Therefore we wish t o  make a model of the  magnetosphere which includes 
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boundary cu r ren t s  and t o  inves t iga t e  the  change a r i n g  cu r ren t  w i l l  

produce when added t o  t h i s  model. 

A sphe r i ca l  bounded magnetosphere can be obtained by cons t ra in ing  

3 
b the  surface cu r ren t s  t o  produce a uniform northward A B = 2M/r 

everywhere in s ide  a sphere of rad ius  r Then the  boundary-current 

f i e l d  outs ide r w i l l  be d ipo la r  and w i l l  cance l  t he  primary d ipole  

f i e l d  t o  produce the  n u l l  f i e l d  of i n t e rp l ane ta ry  space. To avoid 

b '  

b 

d i s c o n t i n u i t i e s  the  sur face  cu r ren t  i s  given a s m a l l  but  f i n i t e  th ickness  

E. The ga te  poin t  i s  found e a s i l y  by observing t h a t ,  t o  d e f l e c t  a 

p a r t i c l e ,  r must be below r + E; but  a p a r t i c l e  f o r  which 

Cst > rb / G h a s  a rad ius  of curvature  l e s s  than r anywhere a t  or below 

r A s  t h i s  includes the  r i g i d i t y  range of our experiment, a de t ec t ab le  

p a r t i c l e  t h a t  j u s t  c i r c l e s  the  e a r t h  a t  height  r i s  r e s t r i c t e d  t o  

g b 

b '  

g 
< r < r + ~  

b g b r 

Using P, (rg) = o i n  (AI), 

Now (A5)  g ives  

and again (Ab) i s  the  c u t o f f  d i s tance .  

When a r i n g  cu r ren t  i s  introduced the  t o t a l  per turba t ion  can be 

and the  respec t ive  parameters as r b ' 9 y p l >  and I' ' *  w r i t t e n  as A + 
The change i n  y i s  given by 

C 

P 
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Now, i f  t he  magnetospheri.c boundary remains f ixed ,  y mst de- 

increase ,  because A @'(r  ' )  i s  a s u b s t a n t i a l  negative 
P 

crease and r 

quantity.  This i s  more convincing i f  A @ i s  wr i t t en  as a sum of 

boundary and r i n g  cu r ren t  terms: 

C C 

M 2 

b 
A @  = A @ ,  i- A @ b  = A @ ,  + r 

Then A y becomes 
P 

C '  
I f  we assume what we a r e  t r y i n g  t o  disprove, namely t h a t  r ' < r 

then both terms a r e  negative,  A y < 0, and r > r i n  cont rad ic t ion  

t o  the  assumption. 

again w i t h  p r a c t i c a l l y  no r e s t r i c t i o n  on t h e  r i n g  cu r ren t .  

C 

P C C '  

Thus i f  rb remains fixed t h e  cu tof f  i s  r a i s e d ,  

I n  order t o  include poss ib le  movement of t he  boundary we must 

introduce two more va r i ab le s  representing t h e  f a c t o r s  t h a t  would com- 

press or i n f l a t e  t h e  magnetosphere. Teading t o  compress the  boundary i s  

the  s o l a r  wind pressure p. Acting i n  the  opposite d i r e c t i o n  is  an 

increase i n  the  magnetic f i e l d  pressure in s ide  t h e  boundary caused by 

the  r ing  cu r ren t  p lus  an augmented boundary cu r ren t .  It i s  reasonable 

t o  assume t h a t ,  as far out as the  boundary, t he  r i n g  cur ren t  f i e l d  i s  

a d ipolar  M 3 . It i s  canceled i n  in t e rp l ane ta ry  space by an 

increase i n  t h e  boundary cur ren t  moment, M' = M + M I .  Equation A6 

b ec ome s 

I 

/r 

r 
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1 1 - 2 2 2 r 
C 

The p o l a r i t y  of A y i s  decided by a competition between term 3 above, 

which i s  negative,  and term 1, which may be p o s i t i v e .  Term 2 i s  small, 

but  i f  necessary it can be d e a l t  w i t h  as before by assuming rc'  < r 

and demonstrating the  cont rad ic t ion .  A s  an upper l i m i t  t o  

P 

C 

A $ '  ( rc ' )  take - M r ' ,  so t h a t  term 3 i s  l e s s  than r l  b 

1 1 M '  
2 r '  M 
- - -  

b 

Comparison w i t h  term 1 shows t h a t  A y < 0 and therefore  the  cu tof f  

i s  r a i sed  as before. 
P 

I Throughout t h i s  e n t i r e  discussion we have taken pains t o  assume as 

l i t t l e  as poss ib le  about t h e  shape of the  r i n g  cu r ren t  f i e l d .  There- 

fore  we be l ieve  t h a t  t he  r e s u l t  is inescapable: no symmetric f i e l d  and 

r i n g  cu r ren t  could have lowered the  cu tof f  a l t i t u d e  of t he  solar protons 

observed by Explorer 26. 
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