18 research outputs found

    Candidalysin is required for neutrophil recruitment and virulence during systemic Candida albicans infection

    Get PDF
    Background Candidalysin is a cytolytic peptide toxin secreted by Candida albicans hyphae and has significantly advanced our understanding of fungal pathogenesis. Candidalysin is critical for mucosal C albicans infections and is known to activate epithelial cells to induce downstream innate immune responses that are associated with protection or immunopathology during oral or vaginal infections. Furthermore, candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. However, the role of candidalysin in driving systemic infections is unknown. Methods In this study, using candidalysin-producing and candidalysin-deficient C albicans strains, we show that candidalysin activates mitogen-activated protein kinase (MAPK) signaling and chemokine secretion in endothelial cells in vitro. Results Candidalysin induces immune activation and neutrophil recruitment in vivo, and it promotes mortality in zebrafish and murine models of systemic fungal infection. Conclusions The data demonstrate a key role for candidalysin in neutrophil recruitment and fungal virulence during disseminated systemic C albicans infections

    Methodologies for <i>in vitro</i> and <i>in vivo</i> evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms.

    Get PDF
    Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research. To direct advancements in this field, here we present an overview of the methods currently available for determining (i) the susceptibility or resistance of fungal isolates or biofilms to antifungal or antibiofilm compounds and compound combinations; (ii) the &lt;i&gt;in vivo&lt;/i&gt; efficacy of antifungal and antibiofilm compounds and compound combinations; and (iii) the &lt;i&gt;in vitro&lt;/i&gt; and &lt;i&gt;in vivo&lt;/i&gt; performance of anti-infective coatings and materials to prevent fungal biofilm-based infections

    Endothelial cells, tissue factor and infectious diseases

    No full text
    Tissue factor is a transmembrane procoagulant glycoprotein and a member of the cytokine receptor superfamily. It activates the extrinsic coagulation pathway, and induces the formation of a fibrin clot. Tissue factor is important for both normal homeostasis and the development of many thrombotic diseases. A wide variety of cells are able to synthesize and express tissue factor, including monocytes, granulocytes, platelets and endothelial cells. Tissue factor expression can be induced by cell surface components of pathogenic microorganisms, proinflammatory cytokines and membrane microparticles released from activated host cells. Tissue factor plays an important role in initiating thrombosis associated with inflammation during infection, sepsis, and organ transplant rejection. Recent findings suggest that tissue factor can also function as a receptor and thus may be important in cell signaling. The present minireview will focus on the role of tissue factor in the pathogenesis of septic shock, infectious endocarditis and invasive aspergillosis, as determined by both in vivo and in vitro models

    CX3CR1 is dispensable for control of mucosal Candida albicans infections in mice and humans

    Get PDF
    Contains fulltext : 154694.pdf (publisher's version ) (Open Access)Candida albicans is part of the normal commensal microbiota of mucosal surfaces in a large percentage of the human population. However, perturbations of the host's immune response or bacterial microbiota have been shown to predispose individuals to the development of opportunistic Candida infections. It was recently discovered that a defect in the chemokine receptor CX3CR1 increases susceptibility of mice and humans to systemic candidiasis. However, whether CX3CR1 confers protection against mucosal C. albicans infection has not been investigated. Using two different mouse models, we found that Cx3cr1 is dispensable for the induction of interleukin 17A (IL-17A), IL-22, and IL-23 in the tongue after infection, as well as for the clearance of mucosal candidiasis from the tongue or lower gastrointestinal (GI) tract colonization. Furthermore, the dysfunctional human CX3CR1 allele CX3CR1-M280 was not associated with development of recurrent vulvovaginal candidiasis (RVVC) in women. Taken together, these data indicate that CX3CR1 is not essential for protection of the host against mucosal candidiasis, underscoring the dependence on different mammalian immune factors for control of mucosal versus systemic Candida infections

    Role of Retrograde Trafficking in Stress Response, Host Cell Interactions, and Virulence of Candida albicans

    Get PDF
    In Saccharomyces cerevisiae, the vacuolar protein sorting complexes Vps51/52/53/54 and Vps15/30/34/38 are essential for efficient endosome-to-Golgi complex retrograde transport. Here we investigated the function of Vps15 and Vps51, representative members of these complexes, in the stress resistance, host cell interactions, and virulence of Candida albicans. We found that C. albicans vps15Δ/Δ and vps51Δ/Δ mutants had abnormal vacuolar morphology, impaired retrograde protein trafficking, and dramatically increased susceptibility to a variety of stressors. These mutants also had reduced capacity to invade and damage oral epithelial cells in vitro and attenuated virulence in the mouse model of oropharyngeal candidiasis. Proteomic analysis of the cell wall of the vps51Δ/Δ mutant revealed increased levels of the Crh11 and Utr2 transglycosylases, which are targets of the calcineurin signaling pathway. The transcript levels of the calcineurin pathway members CHR11, UTR2, CRZ1, CNA1, and CNA2 were elevated in the vps15Δ/Δ and vps51Δ/Δ mutants. Furthermore, these strains were highly sensitive to the calcineurin-specific inhibitor FK506. Also, deletion of CHR11 and UTR2 further increased the stress susceptibility of these mutants. In contrast, overexpression of CRH11 and UTR2 partially rescued their defects in stress resistance, but not host cell interactions. Therefore, intact retrograde trafficking in C. albicans is essential for stress resistance, host cell interactions, and virulence. Aberrant retrograde trafficking stimulates the calcineurin signaling pathway, leading to the increased expression of Chr11 and Utr2, which enables C. albicans to withstand environmental stress

    Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue

    No full text
    Candida albicans and Staphylococcus aureus are often co-isolated in cases of biofilm-associated infections. C. albicans can cause systemic disease through morphological switch from the rounded yeast to the invasive hyphal form. Alternatively, systemic S. aureus infections arise from seeding through breaks in host epithelial layers although many patients have no documented portal of entry. We describe a novel strategy by which S. aureus is able to invade host tissue and disseminate via adherence to the invasive hyphal elements of Candida albicans. In vitro and ex vivo findings demonstrate a specific binding of the staphylococci to the candida hyphal elements. The C. albicans cell wall adhesin Als3p binds to multiple staphylococcal adhesins. Furthermore, Als3p is required for C. albicans to transport S. aureus into the tissue and cause a disseminated infection in an oral co-colonization model. These findings suggest that C. albicans can facilitate the invasion of S. aureus across mucosal barriers, leading to systemic infection in co-colonized patients

    Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America.

    Get PDF
    Contains fulltext : 79640.pdf (publisher's version ) (Closed access)Guidelines for the management of patients with invasive candidiasis and mucosal candidiasis were prepared by an Expert Panel of the Infectious Diseases Society of America. These updated guidelines replace the previous guidelines published in the 15 January 2004 issue of Clinical Infectious Diseases and are intended for use by health care providers who care for patients who either have or are at risk of these infections. Since 2004, several new antifungal agents have become available, and several new studies have been published relating to the treatment of candidemia, other forms of invasive candidiasis, and mucosal disease, including oropharyngeal and esophageal candidiasis. There are also recent prospective data on the prevention of invasive candidiasis in high-risk neonates and adults and on the empiric treatment of suspected invasive candidiasis in adults. This new information is incorporated into this revised document
    corecore