44 research outputs found

    Contextualizing students' alcohol use perceptions and practices within French culture: an analysis of gender and drinking among sport-science college students

    Get PDF
    Although research has examined alcohol consumption and sport in a variety of contexts, there is a paucity of research on gender and gender dynamics among French college students. The present study addresses this gap in the literature by examining alcohol use practices by men and women among a non-probability sample of French sport science students from five different universities in Northern France. We utilized both survey data (N = 534) and in-depth qualitative interviews (n = 16) to provide empirical and theoretical insight into a relatively ubiquitous health concern: the culture of intoxication. Qualitative data were based on students’ perceptions of their own alcohol use; analysis were framed by theoretical conceptions of gender. Survey results indicate gender differences in alcohol consumption wherein men reported a substantially higher frequency and quantity of alcohol use compared to their female peers. Qualitative findings confirm that male privilege and women’s concern for safety, masculine embodiment via alcohol use, gendering of alcohol type, and gender conformity pressures shape gender disparities in alcohol use behavior. Our findings also suggest that health education policy and educational programs focused on alcohol-related health risks need to be designed to take into account gender category and gender orientation

    Chromo- and Fluorogenic Organometallic Sensors

    Get PDF
    Compounds that change their absorption and/or emission properties in the presence of a target ion or molecule have been studied for many years as the basis for optical sensing. Within this group of compounds, a variety of organometallic complexes have been proposed for the detection of a wide range of analytes such as cations (including H+), anions, gases (e.g. O 2, SO2, organic vapours), small organic molecules, and large biomolecules (e.g. proteins, DNA). This chapter focuses on work reported within the last few years in the area of organometallic sensors. Some of the most extensively studied systems incorporate metal moieties with intense long-lived metal-to-ligand charge transfer (MLCT) excited states as the reporter or indicator unit, such as fac-tricarbonyl Re(I) complexes, cyclometallated Ir(III) species, and diimine Ru(II) or Os(II) derivatives. Other commonly used organometallic sensors are based on Pt-alkynyls and ferrocene fragments. To these reporters, an appropriate recognition or analyte-binding unit is usually attached so that a detectable modification on the colour and/or the emission of the complex occurs upon binding of the analyte. Examples of recognition sites include macrocycles for the binding of cations, H-bonding units selective to specific anions, and DNA intercalating fragments. A different approach is used for the detection of some gases or vapours, where the sensor's response is associated with changes in the crystal packing of the complex on absorption of the gas, or to direct coordination of the analyte to the metal centre

    Neutral copper(I) complexes featuring phosphinesulfonate chelates

    No full text
    International audienceThe reaction of diphenylphosphinobenzenesulfonic acid with copper(i) oxide resulted in the formation of the new neutral dimeric copper(I) complex {Cu2(DPPBS)2·MeOH)2}. X-ray diffraction studies revealed that the complex has a dimeric structure and a pyramidal trigonal geometry around the copper atom which contains coordinated methanol molecules at the copper centers. Cleavage of the dimer by reaction with various bipyrimidines enabled the preparation of the corresponding well-defined heterotopic mononuclear [Cu(P^O)(N^N)] and dinuclear {(P^O)Cu(N^N)Cu(P^O)} complexes. X-ray crystal structure determination shows these to have distorted tetrahedral geometries. Their absorption and emission properties were investigated experimentally and photophysical data were also confirmed by DFT and TD-DFT calculations. Owing to the methanol molecules, the neutral crystalline dimer {Cu2(DPPBS)2·(MeOH)2} displays green reversible photoluminescence upon UV irradiation in the solid state with an absolute luminescence quantum yield of 0.5

    Supramolecular Ruthenium-Alkynyl Multicomponent Architectures: Engineering, Photophysical Properties, and Responsiveness to Nitroaromatics

    No full text
    International audienceA series of H-bonded supramolecular architectures were built from monofunctional M-C≡C-R and bifunctional R-C≡C-M-C≡C-R trans-alkynylbis(1,2-bis(diphenylphosphino)ethane)ruthenium(II) complexes and π-conjugated modules containing 2,5-dialkoxy-p-phenylene. Incorporation on each partner of a cyanuric end and of the complementary Hamilton receptor provided the necessary means to keep the constituents together via strong hydrogen bonding. Characterization of all architectures has been performed on the basis of NMR and photophysical methods. In particular, the formation of a Hamilton receptor/cyanuric acid complex has been exemplified by an X-ray single-crystal structure determination. Both self-assembly and accurate modification of the complementary blocks were ensured in such a way that the resulting materials maintain the responsiveness of the electron-rich 2,5-dialkoxy-p-phenylene spacers toward nitroaromatics
    corecore